Filippo0.2 (#361)
* Add summation and remove deepcopy (only for tensors) in LabelTensor class * Update operators for compatibility with updated LabelTensor implementation * Implement labels.setter in LabelTensor class * Update LabelTensor --------- Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
1d3df2a127
commit
fdb8f65143
@@ -17,12 +17,14 @@ labels_row = {
|
||||
"dof": range(20)
|
||||
}
|
||||
}
|
||||
labels_list = ['x', 'y', 'z']
|
||||
labels_all = labels_column | labels_row
|
||||
|
||||
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all])
|
||||
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
|
||||
def test_constructor(labels):
|
||||
LabelTensor(data, labels)
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
with pytest.raises(ValueError):
|
||||
LabelTensor(data, ['a', 'b'])
|
||||
@@ -61,7 +63,6 @@ def test_extract_2D(labels_te):
|
||||
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new))
|
||||
|
||||
def test_extract_3D():
|
||||
labels = labels_all
|
||||
data = torch.rand(20, 3, 4)
|
||||
labels = {
|
||||
1: {
|
||||
@@ -80,6 +81,7 @@ def test_extract_3D():
|
||||
|
||||
tensor = LabelTensor(data, labels)
|
||||
new = tensor.extract(labels_te)
|
||||
tensor2 = LabelTensor(data, labels)
|
||||
assert new.ndim == tensor.ndim
|
||||
assert new.shape[0] == 20
|
||||
assert new.shape[1] == 2
|
||||
@@ -88,6 +90,10 @@ def test_extract_3D():
|
||||
data[:, 0::2, 1:4].reshape(20, 2, 3),
|
||||
new
|
||||
))
|
||||
assert tensor2.ndim == tensor.ndim
|
||||
assert tensor2.shape == tensor.shape
|
||||
assert tensor.labels == tensor2.labels
|
||||
assert new.shape != tensor.shape
|
||||
|
||||
def test_concatenation_3D():
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
@@ -146,3 +152,51 @@ def test_concatenation_3D():
|
||||
assert lt_cat.labels[2]['dof'] == range(5)
|
||||
assert lt_cat.labels[0]['dof'] == range(20)
|
||||
assert lt_cat.labels[1]['dof'] == range(3)
|
||||
|
||||
|
||||
def test_summation():
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(30,3), ['x', 'y', 'z'])
|
||||
with pytest.raises(RuntimeError):
|
||||
LabelTensor.summation([lt1, lt2])
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt_sum = LabelTensor.summation([lt1, lt2])
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
||||
lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
|
||||
lt_sum = LabelTensor.summation([lt1, lt2, lt3])
|
||||
assert lt_sum.ndim == lt_sum.ndim
|
||||
assert lt_sum.shape[0] == 20
|
||||
assert lt_sum.shape[1] == 3
|
||||
assert lt_sum.labels == labels_all
|
||||
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
||||
|
||||
def test_append_3D():
|
||||
data_1 = torch.rand(20, 3, 4)
|
||||
labels_1 = ['x', 'y', 'z', 'w']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(50, 3, 4)
|
||||
labels_2 = ['x', 'y', 'z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2)
|
||||
assert lt1.shape == (70, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(70)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
data_1 = torch.rand(20, 3, 2)
|
||||
labels_1 = ['x', 'y']
|
||||
lt1 = LabelTensor(data_1, labels_1)
|
||||
data_2 = torch.rand(20, 3, 2)
|
||||
labels_2 = ['z', 'w']
|
||||
lt2 = LabelTensor(data_2, labels_2)
|
||||
lt1 = lt1.append(lt2, mode='cross')
|
||||
assert lt1.shape == (20, 3, 4)
|
||||
assert lt1.labels[0]['dof'] == range(20)
|
||||
assert lt1.labels[1]['dof'] == range(3)
|
||||
assert lt1.labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
||||
|
||||
@@ -16,28 +16,29 @@ def func_scalar(x):
|
||||
return x_**2 + y_**2 + z_**2
|
||||
|
||||
|
||||
inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z'])
|
||||
tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c'])
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a'])
|
||||
data = torch.rand((20, 3))
|
||||
inp = LabelTensor(data, ['x', 'y', 'mu']).requires_grad_(True)
|
||||
labels = ['a', 'b', 'c']
|
||||
tensor_v = LabelTensor(func_vec(inp), labels)
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
|
||||
|
||||
|
||||
def test_grad_scalar_output():
|
||||
grad_tensor_s = grad(tensor_s, inp)
|
||||
true_val = 2*inp
|
||||
assert grad_tensor_s.shape == inp.shape
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in inp.labels[inp.ndim-1]['dof']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
|
||||
true_val = 2*inp.extract(['x', 'y'])
|
||||
assert grad_tensor_s.shape == (inp.shape[0], 2)
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
|
||||
assert grad_tensor_s.shape == (20, 2)
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_grad_vector_output():
|
||||
grad_tensor_v = grad(tensor_v, inp)
|
||||
true_val = torch.cat(
|
||||
@@ -74,7 +75,6 @@ def test_grad_vector_output():
|
||||
]
|
||||
assert torch.allclose(grad_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_div_vector_output():
|
||||
div_tensor_v = div(tensor_v, inp)
|
||||
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
|
||||
@@ -88,7 +88,6 @@ def test_div_vector_output():
|
||||
assert div_tensor_v.labels == [f'dadx+dbdy']
|
||||
assert torch.allclose(div_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_laplacian_scalar_output():
|
||||
laplace_tensor_s = laplacian(tensor_s, inp)
|
||||
true_val = 6*torch.ones_like(laplace_tensor_s)
|
||||
@@ -102,7 +101,6 @@ def test_laplacian_scalar_output():
|
||||
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
||||
assert torch.allclose(laplace_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_laplacian_vector_output():
|
||||
laplace_tensor_v = laplacian(tensor_v, inp)
|
||||
true_val = 2*torch.ones_like(tensor_v)
|
||||
|
||||
Reference in New Issue
Block a user