Filippo0.2 (#361)
* Add summation and remove deepcopy (only for tensors) in LabelTensor class * Update operators for compatibility with updated LabelTensor implementation * Implement labels.setter in LabelTensor class * Update LabelTensor --------- Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
1d3df2a127
commit
fdb8f65143
@@ -16,28 +16,29 @@ def func_scalar(x):
|
||||
return x_**2 + y_**2 + z_**2
|
||||
|
||||
|
||||
inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z'])
|
||||
tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c'])
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a'])
|
||||
data = torch.rand((20, 3))
|
||||
inp = LabelTensor(data, ['x', 'y', 'mu']).requires_grad_(True)
|
||||
labels = ['a', 'b', 'c']
|
||||
tensor_v = LabelTensor(func_vec(inp), labels)
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
|
||||
|
||||
|
||||
def test_grad_scalar_output():
|
||||
grad_tensor_s = grad(tensor_s, inp)
|
||||
true_val = 2*inp
|
||||
assert grad_tensor_s.shape == inp.shape
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in inp.labels[inp.ndim-1]['dof']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
|
||||
true_val = 2*inp.extract(['x', 'y'])
|
||||
assert grad_tensor_s.shape == (inp.shape[0], 2)
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
|
||||
assert grad_tensor_s.shape == (20, 2)
|
||||
assert grad_tensor_s.labels[grad_tensor_s.ndim-1]['dof'] == [
|
||||
f'd{tensor_s.labels[tensor_s.ndim-1]["dof"][0]}d{i}' for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_grad_vector_output():
|
||||
grad_tensor_v = grad(tensor_v, inp)
|
||||
true_val = torch.cat(
|
||||
@@ -74,7 +75,6 @@ def test_grad_vector_output():
|
||||
]
|
||||
assert torch.allclose(grad_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_div_vector_output():
|
||||
div_tensor_v = div(tensor_v, inp)
|
||||
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
|
||||
@@ -88,7 +88,6 @@ def test_div_vector_output():
|
||||
assert div_tensor_v.labels == [f'dadx+dbdy']
|
||||
assert torch.allclose(div_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_laplacian_scalar_output():
|
||||
laplace_tensor_s = laplacian(tensor_s, inp)
|
||||
true_val = 6*torch.ones_like(laplace_tensor_s)
|
||||
@@ -102,7 +101,6 @@ def test_laplacian_scalar_output():
|
||||
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
||||
assert torch.allclose(laplace_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_laplacian_vector_output():
|
||||
laplace_tensor_v = laplacian(tensor_v, inp)
|
||||
true_val = 2*torch.ones_like(tensor_v)
|
||||
|
||||
Reference in New Issue
Block a user