Rename files
This commit is contained in:
committed by
Nicola Demo
parent
886bd23fdb
commit
ff43a7492b
195
pina/model/block/pod_block.py
Normal file
195
pina/model/block/pod_block.py
Normal file
@@ -0,0 +1,195 @@
|
||||
"""Module for Base Continuous Convolution class."""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import torch
|
||||
from .stride import Stride
|
||||
from .utils_convolution import optimizing
|
||||
import warnings
|
||||
|
||||
|
||||
class PODBlock(torch.nn.Module):
|
||||
"""
|
||||
POD layer: it projects the input field on the proper orthogonal
|
||||
decomposition basis. It needs to be fitted to the data before being used
|
||||
with the method :meth:`fit`, which invokes the singular value decomposition.
|
||||
The layer is not trainable.
|
||||
|
||||
.. note::
|
||||
All the POD modes are stored in memory, avoiding to recompute them when the rank changes but increasing the memory usage.
|
||||
"""
|
||||
|
||||
def __init__(self, rank, scale_coefficients=True):
|
||||
"""
|
||||
Build the POD layer with the given rank.
|
||||
|
||||
:param int rank: The rank of the POD layer.
|
||||
:param bool scale_coefficients: If True, the coefficients are scaled
|
||||
after the projection to have zero mean and unit variance.
|
||||
"""
|
||||
super().__init__()
|
||||
self.__scale_coefficients = scale_coefficients
|
||||
self._basis = None
|
||||
self._scaler = None
|
||||
self._rank = rank
|
||||
|
||||
@property
|
||||
def rank(self):
|
||||
"""
|
||||
The rank of the POD layer.
|
||||
|
||||
:rtype: int
|
||||
"""
|
||||
return self._rank
|
||||
|
||||
@rank.setter
|
||||
def rank(self, value):
|
||||
if value < 1 or not isinstance(value, int):
|
||||
raise ValueError("The rank must be positive integer")
|
||||
|
||||
self._rank = value
|
||||
|
||||
@property
|
||||
def basis(self):
|
||||
"""
|
||||
The POD basis. It is a matrix whose columns are the first `self.rank` POD modes.
|
||||
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
if self._basis is None:
|
||||
return None
|
||||
|
||||
return self._basis[: self.rank]
|
||||
|
||||
@property
|
||||
def scaler(self):
|
||||
"""
|
||||
The scaler. It is a dictionary with the keys `'mean'` and `'std'` that
|
||||
store the mean and the standard deviation of the coefficients.
|
||||
|
||||
:rtype: dict
|
||||
"""
|
||||
if self._scaler is None:
|
||||
return
|
||||
|
||||
return {
|
||||
"mean": self._scaler["mean"][: self.rank],
|
||||
"std": self._scaler["std"][: self.rank],
|
||||
}
|
||||
|
||||
@property
|
||||
def scale_coefficients(self):
|
||||
"""
|
||||
If True, the coefficients are scaled after the projection to have zero
|
||||
mean and unit variance.
|
||||
|
||||
:rtype: bool
|
||||
"""
|
||||
return self.__scale_coefficients
|
||||
|
||||
def fit(self, X, randomized=True):
|
||||
"""
|
||||
Set the POD basis by performing the singular value decomposition of the
|
||||
given tensor. If `self.scale_coefficients` is True, the coefficients
|
||||
are scaled after the projection to have zero mean and unit variance.
|
||||
|
||||
:param torch.Tensor X: The tensor to be reduced.
|
||||
"""
|
||||
self._fit_pod(X, randomized)
|
||||
|
||||
if self.__scale_coefficients:
|
||||
self._fit_scaler(torch.matmul(self._basis, X.T))
|
||||
|
||||
def _fit_scaler(self, coeffs):
|
||||
"""
|
||||
Private merhod that computes the mean and the standard deviation of the
|
||||
given coefficients, allowing to scale them to have zero mean and unit
|
||||
variance. Mean and standard deviation are stored in the private member
|
||||
`_scaler`.
|
||||
|
||||
:param torch.Tensor coeffs: The coefficients to be scaled.
|
||||
"""
|
||||
self._scaler = {
|
||||
"std": torch.std(coeffs, dim=1),
|
||||
"mean": torch.mean(coeffs, dim=1),
|
||||
}
|
||||
|
||||
def _fit_pod(self, X, randomized):
|
||||
"""
|
||||
Private method that computes the POD basis of the given tensor and stores it in the private member `_basis`.
|
||||
|
||||
:param torch.Tensor X: The tensor to be reduced.
|
||||
"""
|
||||
if X.device.type == "mps": # svd_lowrank not arailable for mps
|
||||
warnings.warn(
|
||||
"svd_lowrank not available for mps, using svd instead."
|
||||
"This may slow down computations.",
|
||||
ResourceWarning,
|
||||
)
|
||||
self._basis = torch.svd(X.T)[0].T
|
||||
else:
|
||||
if randomized:
|
||||
warnings.warn(
|
||||
"Considering a randomized algorithm to compute the POD basis"
|
||||
)
|
||||
self._basis = torch.svd_lowrank(X.T, q=X.shape[0])[0].T
|
||||
else:
|
||||
self._basis = torch.svd(X.T)[0].T
|
||||
|
||||
def forward(self, X):
|
||||
"""
|
||||
The forward pass of the POD layer. By default it executes the
|
||||
:meth:`reduce` method, reducing the input tensor to its POD
|
||||
representation. The POD layer needs to be fitted before being used.
|
||||
|
||||
:param torch.Tensor X: The input tensor to be reduced.
|
||||
:return: The reduced tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self.reduce(X)
|
||||
|
||||
def reduce(self, X):
|
||||
"""
|
||||
Reduce the input tensor to its POD representation. The POD layer needs
|
||||
to be fitted before being used.
|
||||
|
||||
:param torch.Tensor X: The input tensor to be reduced.
|
||||
:return: The reduced tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
if self._basis is None:
|
||||
raise RuntimeError(
|
||||
"The POD layer needs to be fitted before being used."
|
||||
)
|
||||
|
||||
coeff = torch.matmul(self.basis, X.T)
|
||||
if coeff.ndim == 1:
|
||||
coeff = coeff.unsqueeze(1)
|
||||
|
||||
coeff = coeff.T
|
||||
if self.__scale_coefficients:
|
||||
coeff = (coeff - self.scaler["mean"]) / self.scaler["std"]
|
||||
|
||||
return coeff
|
||||
|
||||
def expand(self, coeff):
|
||||
"""
|
||||
Expand the given coefficients to the original space. The POD layer needs
|
||||
to be fitted before being used.
|
||||
|
||||
:param torch.Tensor coeff: The coefficients to be expanded.
|
||||
:return: The expanded tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
if self._basis is None:
|
||||
raise RuntimeError(
|
||||
"The POD layer needs to be trained before being used."
|
||||
)
|
||||
|
||||
if self.__scale_coefficients:
|
||||
coeff = coeff * self.scaler["std"] + self.scaler["mean"]
|
||||
predicted = torch.matmul(self.basis.T, coeff.T).T
|
||||
|
||||
if predicted.ndim == 1:
|
||||
predicted = predicted.unsqueeze(0)
|
||||
|
||||
return predicted
|
||||
Reference in New Issue
Block a user