Rename files
This commit is contained in:
committed by
Nicola Demo
parent
886bd23fdb
commit
ff43a7492b
148
pina/model/low_rank_neural_operator.py
Normal file
148
pina/model/low_rank_neural_operator.py
Normal file
@@ -0,0 +1,148 @@
|
||||
"""Module LowRank Neural Operator."""
|
||||
|
||||
import torch
|
||||
from torch import nn, cat
|
||||
|
||||
from ..utils import check_consistency
|
||||
|
||||
from .kernel_neural_operator import KernelNeuralOperator
|
||||
from .block.lowrank_block import LowRankBlock
|
||||
|
||||
|
||||
class LowRankNeuralOperator(KernelNeuralOperator):
|
||||
"""
|
||||
Implementation of LowRank Neural Operator.
|
||||
|
||||
LowRank Neural Operator is a general architecture for
|
||||
learning Operators. Unlike traditional machine learning methods
|
||||
LowRankNeuralOperator is designed to map entire functions
|
||||
to other functions. It can be trained with Supervised or PINN based
|
||||
learning strategies.
|
||||
LowRankNeuralOperator does convolution by performing a low rank
|
||||
approximation, see :class:`~pina.model.block.lowrank_layer.LowRankBlock`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Kovachki, N., Li, Z., Liu, B.,
|
||||
Azizzadenesheli, K., Bhattacharya, K., Stuart, A., & Anandkumar, A.
|
||||
(2023). *Neural operator: Learning maps between function
|
||||
spaces with applications to PDEs*. Journal of Machine Learning
|
||||
Research, 24(89), 1-97.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lifting_net,
|
||||
projecting_net,
|
||||
field_indices,
|
||||
coordinates_indices,
|
||||
n_kernel_layers,
|
||||
rank,
|
||||
inner_size=20,
|
||||
n_layers=2,
|
||||
func=torch.nn.Tanh,
|
||||
bias=True,
|
||||
):
|
||||
"""
|
||||
:param torch.nn.Module lifting_net: The neural network for lifting
|
||||
the input. It must take as input the input field and the coordinates
|
||||
at which the input field is avaluated. The output of the lifting
|
||||
net is chosen as embedding dimension of the problem
|
||||
:param torch.nn.Module projecting_net: The neural network for
|
||||
projecting the output. It must take as input the embedding dimension
|
||||
(output of the ``lifting_net``) plus the dimension
|
||||
of the coordinates.
|
||||
:param list[str] field_indices: the label of the fields
|
||||
in the input tensor.
|
||||
:param list[str] coordinates_indices: the label of the
|
||||
coordinates in the input tensor.
|
||||
:param int n_kernel_layers: number of hidden kernel layers.
|
||||
Default is 4.
|
||||
:param int inner_size: Number of neurons in the hidden layer(s) for the
|
||||
basis function network. Default is 20.
|
||||
:param int n_layers: Number of hidden layers. for the
|
||||
basis function network. Default is 2.
|
||||
:param func: The activation function to use for the
|
||||
basis function network. If a single
|
||||
:class:`torch.nn.Module` is passed, this is used as
|
||||
activation function after any layers, except the last one.
|
||||
If a list of Modules is passed,
|
||||
they are used as activation functions at any layers, in order.
|
||||
:param bool bias: If ``True`` the MLP will consider some bias for the
|
||||
basis function network.
|
||||
"""
|
||||
|
||||
# check consistency
|
||||
check_consistency(field_indices, str)
|
||||
check_consistency(coordinates_indices, str)
|
||||
check_consistency(n_kernel_layers, int)
|
||||
|
||||
# check hidden dimensions match
|
||||
input_lifting_net = next(lifting_net.parameters()).size()[-1]
|
||||
output_lifting_net = lifting_net(
|
||||
torch.rand(size=next(lifting_net.parameters()).size())
|
||||
).shape[-1]
|
||||
projecting_net_input = next(projecting_net.parameters()).size()[-1]
|
||||
|
||||
if len(field_indices) + len(coordinates_indices) != input_lifting_net:
|
||||
raise ValueError(
|
||||
"The lifting_net must take as input the "
|
||||
"coordinates vector and the field vector."
|
||||
)
|
||||
|
||||
if (
|
||||
output_lifting_net + len(coordinates_indices)
|
||||
!= projecting_net_input
|
||||
):
|
||||
raise ValueError(
|
||||
"The projecting_net input must be equal to "
|
||||
"the embedding dimension (which is the output) "
|
||||
"of the lifting_net plus the dimension of the "
|
||||
"coordinates, i.e. len(coordinates_indices)."
|
||||
)
|
||||
|
||||
# assign
|
||||
self.coordinates_indices = coordinates_indices
|
||||
self.field_indices = field_indices
|
||||
integral_net = nn.Sequential(
|
||||
*[
|
||||
LowRankBlock(
|
||||
input_dimensions=len(coordinates_indices),
|
||||
embedding_dimenion=output_lifting_net,
|
||||
rank=rank,
|
||||
inner_size=inner_size,
|
||||
n_layers=n_layers,
|
||||
func=func,
|
||||
bias=bias,
|
||||
)
|
||||
for _ in range(n_kernel_layers)
|
||||
]
|
||||
)
|
||||
super().__init__(lifting_net, integral_net, projecting_net)
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Forward computation for LowRank Neural Operator. It performs a
|
||||
lifting of the input by the ``lifting_net``. Then different layers
|
||||
of LowRank Neural Operator Blocks are applied.
|
||||
Finally the output is projected to the final dimensionality
|
||||
by the ``projecting_net``.
|
||||
|
||||
:param torch.Tensor x: The input tensor for fourier block,
|
||||
depending on ``dimension`` in the initialization. It expects
|
||||
a tensor :math:`B \times N \times D`,
|
||||
where :math:`B` is the batch_size, :math:`N` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem, i.e. the sum
|
||||
of ``len(coordinates_indices)+len(field_indices)``.
|
||||
:return: The output tensor obtained from Average Neural Operator.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# extract points
|
||||
coords = x.extract(self.coordinates_indices)
|
||||
# lifting
|
||||
x = self._lifting_operator(x)
|
||||
# kernel
|
||||
for module in self._integral_kernels:
|
||||
x = module(x, coords)
|
||||
# projecting
|
||||
return self._projection_operator(cat((x, coords), dim=-1))
|
||||
Reference in New Issue
Block a user