"""Formulation of the inverse Poisson problem in a square domain.""" import warnings import requests import torch from io import BytesIO from ... import Condition from ... import LabelTensor from ...operator import laplacian from ...domain import CartesianDomain from ...equation import Equation, FixedValue from ...problem import SpatialProblem, InverseProblem from ...utils import custom_warning_format, check_consistency warnings.formatwarning = custom_warning_format warnings.filterwarnings("always", category=ResourceWarning) def _load_tensor_from_url(url, labels, timeout=10): """ Downloads a tensor file from a URL and wraps it in a LabelTensor. This function fetches a `.pth` file containing tensor data, extracts it, and returns it as a LabelTensor using the specified labels. If the file cannot be retrieved (e.g., no internet connection), a warning is issued and None is returned. :param str url: URL to the remote `.pth` tensor file. :param list[str] | tuple[str] labels: Labels for the resulting LabelTensor. :param int timeout: Timeout for the request in seconds. :return: A LabelTensor object if successful, otherwise None. :rtype: LabelTensor | None """ # Try to download the tensor file from the given URL try: response = requests.get(url, timeout=timeout) response.raise_for_status() tensor = torch.load( BytesIO(response.content), weights_only=False ).tensor.detach() return LabelTensor(tensor, labels) # If the request fails, issue a warning and return None except requests.exceptions.RequestException as e: warnings.warn( f"Could not download data for 'InversePoisson2DSquareProblem' " f"from '{url}'. Reason: {e}. Skipping data loading.", ResourceWarning, ) return None def laplace_equation(input_, output_, params_): """ Implementation of the laplace equation. :param LabelTensor input_: Input data of the problem. :param LabelTensor output_: Output data of the problem. :param dict params_: Parameters of the problem. :return: The residual of the laplace equation. :rtype: LabelTensor """ force_term = torch.exp( -2 * (input_.extract(["x"]) - params_["mu1"]) ** 2 - 2 * (input_.extract(["y"]) - params_["mu2"]) ** 2 ) delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"]) return delta_u - force_term class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem): r""" Implementation of the inverse 2-dimensional Poisson problem in the square domain :math:`[0, 1] \times [0, 1]`, with unknown parameter domain :math:`[-1, 1] \times [-1, 1]`. The `"data"` condition is added only if the required files are downloaded successfully. :Example: >>> problem = InversePoisson2DSquareProblem() """ output_variables = ["u"] x_min, x_max = -2, 2 y_min, y_max = -2, 2 spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]}) unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]}) domains = { "g1": CartesianDomain({"x": [x_min, x_max], "y": y_max}), "g2": CartesianDomain({"x": [x_min, x_max], "y": y_min}), "g3": CartesianDomain({"x": x_max, "y": [y_min, y_max]}), "g4": CartesianDomain({"x": x_min, "y": [y_min, y_max]}), "D": CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]}), } conditions = { "g1": Condition(domain="g1", equation=FixedValue(0.0)), "g2": Condition(domain="g2", equation=FixedValue(0.0)), "g3": Condition(domain="g3", equation=FixedValue(0.0)), "g4": Condition(domain="g4", equation=FixedValue(0.0)), "D": Condition(domain="D", equation=Equation(laplace_equation)), } def __init__(self, load=True, data_size=1.0): """ Initialization of the :class:`InversePoisson2DSquareProblem`. :param bool load: If True, it attempts to load data from remote URLs. Set to False to skip data loading (e.g., if no internet connection). :param float data_size: The fraction of the total data to use for the "data" condition. If set to 1.0, all available data is used. If set to 0.0, no data is used. Default is 1.0. :raises ValueError: If `data_size` is not in the range [0.0, 1.0]. :raises ValueError: If `data_size` is not a float. """ super().__init__() # Check consistency check_consistency(load, bool) check_consistency(data_size, float) if not 0.0 <= data_size <= 1.0: raise ValueError( f"data_size must be in the range [0.0, 1.0], got {data_size}." ) # Load data if requested if load: # Define URLs for input and output data input_url = ( "https://github.com/mathLab/PINA/raw/refs/heads/master" "/tutorials/tutorial7/data/pts_0.5_0.5" ) output_url = ( "https://github.com/mathLab/PINA/raw/refs/heads/master" "/tutorials/tutorial7/data/pinn_solution_0.5_0.5" ) # Define input and output data input_data = _load_tensor_from_url( input_url, ["x", "y", "mu1", "mu2"] ) output_data = _load_tensor_from_url(output_url, ["u"]) # Add the "data" condition if input_data is not None and output_data is not None: n_data = int(input_data.shape[0] * data_size) self.conditions["data"] = Condition( input=input_data[:n_data], target=output_data[:n_data] )