"""Formulation of the Allen Cahn problem.""" import torch from ... import Condition from ...problem import SpatialProblem, TimeDependentProblem from ...equation import Equation, AllenCahn from ...utils import check_consistency from ...domain import CartesianDomain def initial_condition(input_, output_): """ Definition of the initial condition of the Allen Cahn problem. :param LabelTensor input_: The input data of the problem. :param LabelTensor output_: The output data of the problem. :return: The residual of the initial condition. :rtype: LabelTensor """ x = input_.extract("x") u_0 = x**2 * torch.cos(torch.pi * x) return output_ - u_0 class AllenCahnProblem(TimeDependentProblem, SpatialProblem): r""" Implementation of the Allen Cahn problem in the spatial interval :math:`[-1, 1]` and temporal interval :math:`[0, 1]`. .. seealso:: **Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano, Nikolaos Stergiopulos, and George E. Karniadakis. *Residual-based attention and connection to information bottleneck theory in PINNs*. Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805 DOI: `10.1016/ j.cma.2024.116805 `_. :Example: >>> problem = AllenCahnProblem() """ output_variables = ["u"] spatial_domain = CartesianDomain({"x": [-1, 1]}) temporal_domain = CartesianDomain({"t": [0, 1]}) domains = { "D": CartesianDomain({"x": [-1, 1], "t": [0, 1]}), "t0": CartesianDomain({"x": [-1, 1], "t": 0.0}), } conditions = { "t0": Condition(domain="t0", equation=Equation(initial_condition)), } def __init__(self, alpha=1e-4, beta=5): """ Initialization of the :class:`AllenCahnProblem`. :param alpha: The diffusion coefficient. :type alpha: float | int :param beta: The reaction coefficient. :type beta: float | int """ super().__init__() check_consistency(alpha, (float, int)) check_consistency(beta, (float, int)) self.alpha = alpha self.beta = beta self.conditions["D"] = Condition( domain="D", equation=AllenCahn(alpha=self.alpha, beta=self.beta), )