import torch from pina.utils import merge_tensors from pina.label_tensor import LabelTensor from pina import LabelTensor from pina.domain import EllipsoidDomain, CartesianDomain from pina.utils import check_consistency import pytest from pina.domain import DomainInterface def test_merge_tensors(): tensor1 = LabelTensor(torch.rand((20, 3)), ["a", "b", "c"]) tensor2 = LabelTensor(torch.zeros((20, 3)), ["d", "e", "f"]) tensor3 = LabelTensor(torch.ones((30, 3)), ["g", "h", "i"]) merged_tensor = merge_tensors((tensor1, tensor2, tensor3)) assert tuple(merged_tensor.labels) == ( "a", "b", "c", "d", "e", "f", "g", "h", "i", ) assert merged_tensor.shape == (20 * 20 * 30, 9) assert torch.all(merged_tensor.extract(("d", "e", "f")) == 0) assert torch.all(merged_tensor.extract(("g", "h", "i")) == 1) def test_check_consistency_correct(): ellipsoid1 = EllipsoidDomain({"x": [1, 2], "y": [-2, 1]}) example_input_pts = LabelTensor(torch.tensor([[0, 0, 0]]), ["x", "y", "z"]) check_consistency(example_input_pts, torch.Tensor) check_consistency(CartesianDomain, DomainInterface, subclass=True) check_consistency(ellipsoid1, DomainInterface) def test_check_consistency_incorrect(): ellipsoid1 = EllipsoidDomain({"x": [1, 2], "y": [-2, 1]}) example_input_pts = LabelTensor(torch.tensor([[0, 0, 0]]), ["x", "y", "z"]) with pytest.raises(ValueError): check_consistency(example_input_pts, DomainInterface) with pytest.raises(ValueError): check_consistency(torch.Tensor, DomainInterface, subclass=True) with pytest.raises(ValueError): check_consistency(ellipsoid1, torch.Tensor)