import torch import pytest from pina.problem import SpatialProblem from pina.operators import laplacian from pina.geometry import CartesianDomain from pina import Condition, LabelTensor from pina.solvers import PINN from pina.trainer import Trainer from pina.model import FeedForward from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue from pina.callbacks.processing_callbacks import PINAProgressBar def laplace_equation(input_, output_): force_term = (torch.sin(input_.extract(['x']) * torch.pi) * torch.sin(input_.extract(['y']) * torch.pi)) delta_u = laplacian(output_.extract(['u']), input_) return delta_u - force_term my_laplace = Equation(laplace_equation) in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y']) out_ = LabelTensor(torch.tensor([[0.]]), ['u']) class Poisson(SpatialProblem): output_variables = ['u'] spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) conditions = { 'gamma1': Condition( location=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.0)), 'gamma2': Condition( location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.0)), 'gamma3': Condition( location=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.0)), 'gamma4': Condition( location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.0)), 'D': Condition( input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']), equation=my_laplace), 'data': Condition( input_points=in_, output_points=out_) } # make the problem poisson_problem = Poisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 poisson_problem.discretise_domain(n, 'grid', locations=boundaries) model = FeedForward(len(poisson_problem.input_variables), len(poisson_problem.output_variables)) # make the solver solver = PINN(problem=poisson_problem, model=model) def test_progress_bar_constructor(): PINAProgressBar(['mean_loss']) def test_progress_bar_routine(): # make the trainer trainer = Trainer(solver=solver, callbacks=[ PINAProgressBar(['mean', 'D']) ], accelerator='cpu', max_epochs=5) trainer.train() # TODO there should be a check that the correct metrics are displayed