import argparse import torch from torch.nn import Softplus from pina import Plotter from pina import PINN as pPINN from problems.parametric_poisson import ParametricPoisson from pina.model import FeedForward class myFeature(torch.nn.Module): """ """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): return torch.exp(- 2*(x.extract(['x']) - x.extract(['mu1']))**2 - 2*(x.extract(['y']) - x.extract(['mu2']))**2) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature()] if args.features else [] poisson_problem = ParametricPoisson() model = FeedForward( layers=[10, 10, 10], output_variables=poisson_problem.output_variables, input_variables=poisson_problem.input_variables, func=Softplus, extra_features=feat ) pinn = pPINN( poisson_problem, model, lr=0.0006, regularizer=1e-6) if args.s: pinn.span_pts(500, n_params=10, mode_spatial='random', locations=['D']) pinn.span_pts(200, n_params=10, mode_spatial='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) pinn.plot_pts() pinn.train(10000, 100) with open('param_poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_: for i, losses in enumerate(pinn.history): file_.write('{} {}\n'.format(i, sum(losses))) pinn.save_state('pina.poisson_param') else: pinn.load_state('pina.poisson_param') plotter = Plotter() plotter.plot(pinn, component='u', parametric=True, params_value=0)