""" Module to define InputEquationCondition class and its subclasses. """ from torch_geometric.data import Data from .condition_interface import ConditionInterface from ..label_tensor import LabelTensor from ..graph import Graph from ..utils import check_consistency from ..equation.equation_interface import EquationInterface class InputEquationCondition(ConditionInterface): """ Condition for input/equation data. This condition must be used every time a Physics Informed Loss is needed in the Solver. """ __slots__ = ["input", "equation"] _avail_input_cls = (LabelTensor, Graph, list, tuple) _avail_equation_cls = EquationInterface def __new__(cls, input, equation): """ Instanciate the correct subclass of InputEquationCondition by checking the type of the input data (only `input`). :param input: torch.Tensor or Graph/Data object containing the input :type input: torch.Tensor or Graph or Data :param EquationInterface equation: Equation object containing the equation function :return: InputEquationCondition subclass :rtype: InputTensorEquationCondition or InputGraphEquationCondition """ # If the class is already a subclass, return the instance if cls != InputEquationCondition: return super().__new__(cls) # Instanciate the correct subclass if isinstance(input, (Graph, Data, list, tuple)): subclass = InputGraphEquationCondition cls._check_graph_list_consistency(input) subclass._check_label_tensor(input) return subclass.__new__(subclass, input, equation) if isinstance(input, LabelTensor): subclass = InputTensorEquationCondition return subclass.__new__(subclass, input, equation) # If the input is not a LabelTensor or a Graph object raise an error raise ValueError( "The input data object must be a LabelTensor or a Graph object." ) def __init__(self, input, equation): """ Initialize the InputEquationCondition by storing the input and equation. :param input: torch.Tensor or Graph/Data object containing the input :type input: torch.Tensor or Graph or Data :param EquationInterface equation: Equation object containing the equation function """ super().__init__() self.input = input self.equation = equation def __setattr__(self, key, value): if key == "input": check_consistency(value, self._avail_input_cls) InputEquationCondition.__dict__[key].__set__(self, value) elif key == "equation": check_consistency(value, self._avail_equation_cls) InputEquationCondition.__dict__[key].__set__(self, value) elif key in ("_problem"): super().__setattr__(key, value) class InputTensorEquationCondition(InputEquationCondition): """ InputEquationCondition subclass for LabelTensor input data. """ class InputGraphEquationCondition(InputEquationCondition): """ InputEquationCondition subclass for Graph input data. """ @staticmethod def _check_label_tensor(input): """ Check if the input is a LabelTensor. :param input: input data :type input: torch.Tensor or Graph or Data """ # Store the fist element of the list/tuple if input is a list/tuple # it is anougth to check the first element because all elements must # have the same type and structure (already checked) data = input[0] if isinstance(input, (list, tuple)) else input # Check if the input data contains at least one LabelTensor for v in data.values(): if isinstance(v, LabelTensor): return raise ValueError( "The input data object must contain at least one LabelTensor." )