:html_theme.sidebar_secondary.remove:
Welcome to PINA’s documentation!
=======================================
.. grid:: 6
:gutter: 1
.. grid-item::
.. image:: index_files/tutorial_13_3.png
:target: _rst/tutorials/tutorial2/tutorial.html
.. grid-item::
.. image:: index_files/tutorial_32_0.png
:target: _rst/tutorials/tutorial4/tutorial.html
.. grid-item::
.. image:: index_files/tutorial_13_01.png
:target: _rst/tutorials/tutorial9/tutorial.html
.. grid-item::
.. image:: index_files/tutorial_5_0.png
:target: _rst/tutorials/tutorial10/tutorial.html
.. grid-item::
.. image:: index_files/tutorial_15_0.png
:target: _rst/tutorials/tutorial13/tutorial.html
.. grid-item::
.. image:: index_files/tutorial_36_0.png
:target: _rst/tutorials/tutorial6/tutorial.html
.. grid:: 1 1 3 3
.. grid-item::
:columns: 12 12 8 8
Physics Informed Neural network for Advanced modeling (**PINA**) is
an open-source Python library providing an intuitive interface for
solving differential equations using PINNs, NOs or both together.
Based on `PyTorch `_ and `PyTorchLightning `_, **PINA** offers a simple and intuitive way to formalize a specific (differential) problem
and solve it using neural networks . The approximated solution of a differential equation
can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.
For further information or questions about **PINA** contact us by email.
.. grid-item-card:: Contents
:class-title: sd-fs-5
:class-body: sd-pl-4
.. toctree::
:maxdepth: 1
Installing <_rst/_installation>
Tutorial <_rst/_tutorial>
API <_rst/_code>
Team & Foundings <_team.rst>
Contributing <_rst/_contributing>
License <_LICENSE.rst>
Cite PINA <_cite.rst>