"""Definition of the inverse Poisson problem on a square domain.""" import torch from pina import Condition, LabelTensor from pina.problem import SpatialProblem, InverseProblem from pina.operator import laplacian from pina.domain import CartesianDomain from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue def laplace_equation(input_, output_, params_): """ Implementation of the laplace equation. """ force_term = torch.exp( -2 * (input_.extract(["x"]) - params_["mu1"]) ** 2 - 2 * (input_.extract(["y"]) - params_["mu2"]) ** 2 ) delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"]) return delta_u - force_term class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem): """ Implementation of the inverse 2-dimensional Poisson problem on a square domain, with parameter domain [-1, 1] x [-1, 1]. """ output_variables = ["u"] x_min, x_max = -2, 2 y_min, y_max = -2, 2 data_input = LabelTensor(torch.rand(10, 2), ["x", "y"]) data_output = LabelTensor(torch.rand(10, 1), ["u"]) spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]}) unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]}) domains = { "g1": CartesianDomain({"x": [x_min, x_max], "y": y_max}), "g2": CartesianDomain({"x": [x_min, x_max], "y": y_min}), "g3": CartesianDomain({"x": x_max, "y": [y_min, y_max]}), "g4": CartesianDomain({"x": x_min, "y": [y_min, y_max]}), "D": CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]}), } conditions = { "nil_g1": Condition(domain="g1", equation=FixedValue(0.0)), "nil_g2": Condition(domain="g2", equation=FixedValue(0.0)), "nil_g3": Condition(domain="g3", equation=FixedValue(0.0)), "nil_g4": Condition(domain="g4", equation=FixedValue(0.0)), "laplace_D": Condition(domain="D", equation=Equation(laplace_equation)), "data": Condition( input=data_input.extract(["x", "y"]), target=data_output, ), }