""" This module provide basic data management functionalities """ import math import torch from lightning import LightningDataModule from .sample_dataset import SamplePointDataset from .supervised_dataset import SupervisedDataset from .unsupervised_dataset import UnsupervisedDataset from .pina_dataloader import PinaDataLoader from .pina_subset import PinaSubset class PinaDataModule(LightningDataModule): """ This class extend LightningDataModule, allowing proper creation and management of different types of Datasets defined in PINA """ def __init__(self, problem, device, train_size=.7, test_size=.2, eval_size=.1, batch_size=None, shuffle=True, datasets=None): """ Initialize the object, creating dataset based on input problem :param AbstractProblem problem: PINA problem :param device: Device used for training and testing :param train_size: number/percentage of elements in train split :param test_size: number/percentage of elements in test split :param eval_size: number/percentage of elements in evaluation split :param batch_size: batch size used for training :param datasets: list of datasets objects """ super().__init__() dataset_classes = [SupervisedDataset, UnsupervisedDataset, SamplePointDataset] if datasets is None: self.datasets = [DatasetClass(problem, device) for DatasetClass in dataset_classes] else: self.datasets = datasets self.split_length = [] self.split_names = [] if train_size > 0: self.split_names.append('train') self.split_length.append(train_size) if test_size > 0: self.split_length.append(test_size) self.split_names.append('test') if eval_size > 0: self.split_length.append(eval_size) self.split_names.append('eval') self.batch_size = batch_size self.condition_names = None self.splits = {k: {} for k in self.split_names} self.shuffle = shuffle def setup(self, stage=None): """ Perform the splitting of the dataset """ self.extract_conditions() if stage == 'fit' or stage is None: for dataset in self.datasets: if len(dataset) > 0: splits = self.dataset_split(dataset, self.split_length, shuffle=self.shuffle) for i in range(len(self.split_length)): self.splits[ self.split_names[i]][dataset.data_type] = splits[i] elif stage == 'test': raise NotImplementedError("Testing pipeline not implemented yet") else: raise ValueError("stage must be either 'fit' or 'test'") def extract_conditions(self): """ Extract conditions from dataset and update condition indices """ # Extract number of conditions n_conditions = 0 for dataset in self.datasets: if n_conditions != 0: dataset.condition_names = { key + n_conditions: value for key, value in dataset.condition_names.items() } n_conditions += len(dataset.condition_names) self.condition_names = { key: value for dataset in self.datasets for key, value in dataset.condition_names.items() } def train_dataloader(self): """ Return the training dataloader for the dataset :return: data loader :rtype: PinaDataLoader """ return PinaDataLoader(self.splits['train'], self.batch_size, self.condition_names) def test_dataloader(self): """ Return the testing dataloader for the dataset :return: data loader :rtype: PinaDataLoader """ return PinaDataLoader(self.splits['test'], self.batch_size, self.condition_names) def eval_dataloader(self): """ Return the evaluation dataloader for the dataset :return: data loader :rtype: PinaDataLoader """ return PinaDataLoader(self.splits['eval'], self.batch_size, self.condition_names) @staticmethod def dataset_split(dataset, lengths, seed=None, shuffle=True): """ Perform the splitting of the dataset :param dataset: dataset object we wanted to split :param lengths: lengths of elements in dataset :param seed: random seed :param shuffle: shuffle dataset :return: split dataset :rtype: PinaSubset """ if sum(lengths) - 1 < 1e-3: lengths = [ int(math.floor(len(dataset) * length)) for length in lengths ] remainder = len(dataset) - sum(lengths) for i in range(remainder): lengths[i % len(lengths)] += 1 elif sum(lengths) - 1 >= 1e-3: raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1") if sum(lengths) != len(dataset): raise ValueError("Sum of lengths is not equal to dataset length") if shuffle: if seed is not None: generator = torch.Generator() generator.manual_seed(seed) indices = torch.randperm(sum(lengths), generator=generator).tolist() else: indices = torch.arange(sum(lengths)).tolist() else: indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist() offsets = [ sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths)) ] return [ PinaSubset(dataset, indices[offset:offset + length]) for offset, length in zip(offsets, lengths) ]