import torch from pina.problem import AbstractProblem from pina import Condition, LabelTensor from pina.solvers import SupervisedSolver from pina.trainer import Trainer from pina.model import FeedForward from pina.loss import LpLoss class NeuralOperatorProblem(AbstractProblem): input_variables = ['u_0', 'u_1'] output_variables = ['u'] conditions = { # 'data' : Condition( # input_points=LabelTensor(torch.rand(100, 2), input_variables), # output_points=LabelTensor(torch.rand(100, 1), output_variables)) } class myFeature(torch.nn.Module): """ Feature: sin(x) """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): t = (torch.sin(x.extract(['u_0']) * torch.pi) * torch.sin(x.extract(['u_1']) * torch.pi)) return LabelTensor(t, ['sin(x)sin(y)']) # make the problem + extra feats problem = NeuralOperatorProblem() extra_feats = [myFeature()] model = FeedForward(len(problem.input_variables), len(problem.output_variables)) model_extra_feats = FeedForward( len(problem.input_variables) + 1, len(problem.output_variables)) def test_constructor(): SupervisedSolver(problem=problem, model=model) # def test_constructor_extra_feats(): # SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats) def test_train_cpu(): solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss()) trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20) trainer.train() # def test_train_restore(): # tmpdir = "tests/tmp_restore" # solver = SupervisedSolver(problem=problem, # model=model, # extra_features=None, # loss=LpLoss()) # trainer = Trainer(solver=solver, # max_epochs=5, # accelerator='cpu', # default_root_dir=tmpdir) # trainer.train() # ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu') # t = ntrainer.train( # ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt') # import shutil # shutil.rmtree(tmpdir) # def test_train_load(): # tmpdir = "tests/tmp_load" # solver = SupervisedSolver(problem=problem, # model=model, # extra_features=None, # loss=LpLoss()) # trainer = Trainer(solver=solver, # max_epochs=15, # accelerator='cpu', # default_root_dir=tmpdir) # trainer.train() # new_solver = SupervisedSolver.load_from_checkpoint( # f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt', # problem = problem, model=model) # test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables) # assert new_solver.forward(test_pts).shape == (20, 1) # assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape # torch.testing.assert_close( # new_solver.forward(test_pts), # solver.forward(test_pts)) # import shutil # shutil.rmtree(tmpdir) # def test_train_extra_feats_cpu(): # pinn = SupervisedSolver(problem=problem, # model=model_extra_feats, # extra_features=extra_feats) # trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu') # trainer.train()