"""PINA Callbacks Implementations""" import torch import copy from lightning.pytorch.callbacks import Callback, TQDMProgressBar from lightning.pytorch.callbacks.progress.progress_bar import ( get_standard_metrics, ) from pina.utils import check_consistency class MetricTracker(Callback): def __init__(self, metrics_to_track=None): """ Lightning Callback for Metric Tracking. Tracks specific metrics during the training process. :ivar _collection: A list to store collected metrics after each epoch. :param metrics_to_track: List of metrics to track. Defaults to train/val loss. :type metrics_to_track: list, optional """ super().__init__() self._collection = [] # Default to tracking 'train_loss' and 'val_loss' if not specified self.metrics_to_track = metrics_to_track or ["train_loss", "val_loss"] def on_train_epoch_end(self, trainer, pl_module): """ Collect and track metrics at the end of each training epoch. :param trainer: The trainer object managing the training process. :type trainer: pytorch_lightning.Trainer :param pl_module: The model being trained (not used here). """ # Track metrics after the first epoch onwards if trainer.current_epoch > 0: # Append only the tracked metrics to avoid unnecessary data tracked_metrics = { k: v for k, v in trainer.logged_metrics.items() if k in self.metrics_to_track } self._collection.append(copy.deepcopy(tracked_metrics)) @property def metrics(self): """ Aggregate collected metrics over all epochs. :return: A dictionary containing aggregated metric values. :rtype: dict """ if not self._collection: return {} # Get intersection of keys across all collected dictionaries common_keys = set(self._collection[0]).intersection( *self._collection[1:] ) # Stack the metric values for common keys and return return { k: torch.stack([dic[k] for dic in self._collection]) for k in common_keys if k in self.metrics_to_track } class PINAProgressBar(TQDMProgressBar): BAR_FORMAT = "{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_noinv_fmt}{postfix}]" def __init__(self, metrics="val", **kwargs): """ PINA Implementation of a Lightning Callback for enriching the progress bar. This class provides functionality to display only relevant metrics during the training process. :param metrics: Logged metrics to display during the training. It should be a subset of the conditions keys defined in :obj:`pina.condition.Condition`. :type metrics: str | list(str) | tuple(str) :Keyword Arguments: The additional keyword arguments specify the progress bar and can be choosen from the `pytorch-lightning TQDMProgressBar API `_ Example: >>> pbar = PINAProgressBar(['mean']) >>> # ... Perform training ... >>> trainer = Trainer(solver, callbacks=[pbar]) """ super().__init__(**kwargs) # check consistency if not isinstance(metrics, (list, tuple)): metrics = [metrics] check_consistency(metrics, str) self._sorted_metrics = metrics def get_metrics(self, trainer, pl_module): r"""Combines progress bar metrics collected from the trainer with standard metrics from get_standard_metrics. Implement this to override the items displayed in the progress bar. The progress bar metrics are sorted according to ``metrics``. Here is an example of how to override the defaults: .. code-block:: python def get_metrics(self, trainer, model): # don't show the version number items = super().get_metrics(trainer, model) items.pop("v_num", None) return items :return: Dictionary with the items to be displayed in the progress bar. :rtype: tuple(dict) """ standard_metrics = get_standard_metrics(trainer) pbar_metrics = trainer.progress_bar_metrics if pbar_metrics: pbar_metrics = { key: pbar_metrics[key] for key in self._sorted_metrics } return {**standard_metrics, **pbar_metrics} def on_fit_start(self, trainer, pl_module): """ Check that the metrics defined in the initialization are available, i.e. are correctly logged. :param trainer: The trainer object managing the training process. :type trainer: pytorch_lightning.Trainer :param pl_module: Placeholder argument. """ # Check if all keys in sort_keys are present in the dictionary for key in self._sorted_metrics: if ( key not in trainer.solver.problem.conditions.keys() and key != "train" and key != "val" ): raise KeyError(f"Key '{key}' is not present in the dictionary") # add the loss pedix self._sorted_metrics = [ metric + "_loss" for metric in self._sorted_metrics ] return super().on_fit_start(trainer, pl_module)