# import torch # from pina.problem import Problem # from pina.segment import Segment # from pina.cube import Cube # from pina.problem2d import Problem2D # xmin, xmax, ymin, ymax = -1, 1, -1, 1 # class EllipticOptimalControl(Problem2D): # def __init__(self, alpha=1): # def term1(input_, output_): # grad_p = self.grad(output_.extract(['p']), input_) # gradgrad_p_x1 = self.grad(grad_p.extract(['x1']), input_) # gradgrad_p_x2 = self.grad(grad_p.extract(['x2']), input_) # yd = 2.0 # return output_.extract(['y']) - yd - (gradgrad_p_x1.extract(['x1']) + gradgrad_p_x2.extract(['x2'])) # def term2(input_, output_): # grad_y = self.grad(output_.extract(['y']), input_) # gradgrad_y_x1 = self.grad(grad_y.extract(['x1']), input_) # gradgrad_y_x2 = self.grad(grad_y.extract(['x2']), input_) # return - (gradgrad_y_x1.extract(['x1']) + gradgrad_y_x2.extract(['x2'])) - output_.extract(['u']) # def term3(input_, output_): # return output_.extract(['p']) - output_.extract(['u'])*alpha # def nil_dirichlet(input_, output_): # y_value = 0.0 # p_value = 0.0 # return torch.abs(output_.extract(['y']) - y_value) + torch.abs(output_.extract(['p']) - p_value) # self.conditions = { # 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet}, # 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet}, # 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet}, # 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet}, # 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2, term3]}, # } # self.input_variables = ['x1', 'x2'] # self.output_variables = ['u', 'p', 'y'] # self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]]) raise NotImplementedError('not available problem at the moment...')