import numpy as np from .chebyshev import chebyshev_roots import torch from .location import Location from .label_tensor import LabelTensor class Span(Location): def __init__(self, span_dict): self.fixed_ = {} self.range_ = {} for k, v in span_dict.items(): if isinstance(v, (int, float)): self.fixed_[k] = v elif isinstance(v, (list, tuple)) and len(v) == 2: self.range_[k] = v else: raise TypeError def sample(self, n, mode='random'): bounds = np.array(list(self.range_.values())) if mode == 'random': pts = np.random.uniform(size=(n, bounds.shape[0])) elif mode == 'chebyshev': pts = np.array([ chebyshev_roots(n) * .5 + .5 for _ in range(bounds.shape[0])]) grids = np.meshgrid(*pts) pts = np.hstack([grid.reshape(-1, 1) for grid in grids]) elif mode == 'grid': pts = np.array([ np.linspace(0, 1, n) for _ in range(bounds.shape[0])]) grids = np.meshgrid(*pts) pts = np.hstack([grid.reshape(-1, 1) for grid in grids]) elif mode == 'lh' or mode == 'latin': from scipy.stats import qmc sampler = qmc.LatinHypercube(d=bounds.shape[0]) pts = sampler.random(n) # Scale pts pts *= bounds[:, 1] - bounds[:, 0] pts += bounds[:, 0] pts = torch.from_numpy(pts) pts_range_ = LabelTensor(pts, list(self.range_.keys())) fixed = torch.Tensor(list(self.fixed_.values())) pts_fixed_ = torch.ones(pts_range_.tensor.shape[0], len(self.fixed_)) * fixed pts_fixed_ = LabelTensor(pts_fixed_, list(self.fixed_.keys())) if self.fixed_: return LabelTensor.hstack([pts_range_, pts_fixed_]) else: return pts_range_ def meshgrid(self, n): pts = np.array([ np.linspace(0, 1, n) for _ in range(self.bound.shape[0])]) pts *= self.bound[:, 1] - self.bound[:, 0] pts += self.bound[:, 0] return np.meshgrid(*pts)