import torch import pytest from pina.label_tensor import LabelTensor data = torch.rand((20, 3)) labels_column = {1: {"name": "space", "dof": ['x', 'y', 'z']}} labels_row = {0: {"name": "samples", "dof": range(20)}} labels_list = ['x', 'y', 'z'] labels_all = labels_column.copy() labels_all.update(labels_row) @pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list]) def test_constructor(labels): print(LabelTensor(data, labels)) def test_wrong_constructor(): with pytest.raises(ValueError): LabelTensor(data, ['a', 'b']) @pytest.mark.parametrize("labels", [labels_column, labels_all]) @pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}]) def test_extract_column(labels, labels_te): tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 1 assert new.shape[0] == 20 assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new)) @pytest.mark.parametrize("labels", [labels_row, labels_all]) @pytest.mark.parametrize("labels_te", [{'samples': [2]}]) def test_extract_row(labels, labels_te): tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 3 assert new.shape[0] == 1 assert torch.all(torch.isclose(data[2].reshape(1, -1), new)) @pytest.mark.parametrize("labels_te", [{ 'samples': [2], 'space': ['z'] }, { 'space': 'z', 'samples': 2 }]) def test_extract_2D(labels_te): labels = labels_all tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 1 assert new.shape[0] == 1 assert torch.all(torch.isclose(data[2, 2].reshape(1, 1), new)) def test_extract_3D(): data = torch.rand(20, 3, 4) labels = { 1: { "name": "space", "dof": ['x', 'y', 'z'] }, 2: { "name": "time", "dof": range(4) }, } labels_te = {'space': ['x', 'z'], 'time': range(1, 4)} tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) tensor2 = LabelTensor(data, labels) assert new.ndim == tensor.ndim assert new.shape[0] == 20 assert new.shape[1] == 2 assert new.shape[2] == 3 assert torch.all(torch.isclose(data[:, 0::2, 1:4].reshape(20, 2, 3), new)) assert tensor2.ndim == tensor.ndim assert tensor2.shape == tensor.shape assert tensor.full_labels == tensor2.full_labels assert new.shape != tensor.shape def test_concatenation_3D(): data_1 = torch.rand(20, 3, 4) labels_1 = ['x', 'y', 'z', 'w'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(50, 3, 4) labels_2 = ['x', 'y', 'z', 'w'] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2]) assert lt_cat.shape == (70, 3, 4) assert lt_cat.full_labels[0]['dof'] == range(70) assert lt_cat.full_labels[1]['dof'] == range(3) assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w'] data_1 = torch.rand(20, 3, 4) labels_1 = ['x', 'y', 'z', 'w'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2, 4) labels_2 = ['x', 'y', 'z', 'w'] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=1) assert lt_cat.shape == (20, 5, 4) assert lt_cat.full_labels[0]['dof'] == range(20) assert lt_cat.full_labels[1]['dof'] == range(5) assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w'] data_1 = torch.rand(20, 3, 2) labels_1 = ['x', 'y'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 3) labels_2 = ['z', 'w', 'a'] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=2) assert lt_cat.shape == (20, 3, 5) assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a'] assert lt_cat.full_labels[0]['dof'] == range(20) assert lt_cat.full_labels[1]['dof'] == range(3) data_1 = torch.rand(20, 2, 4) labels_1 = ['x', 'y', 'z', 'w'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 4) labels_2 = ['x', 'y', 'z', 'w'] lt2 = LabelTensor(data_2, labels_2) with pytest.raises(RuntimeError): LabelTensor.cat([lt1, lt2], dim=2) data_1 = torch.rand(20, 3, 2) labels_1 = ['x', 'y'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 3) labels_2 = ['z', 'w', 'a'] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=2) assert lt_cat.shape == (20, 3, 5) assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a'] assert lt_cat.full_labels[0]['dof'] == range(20) assert lt_cat.full_labels[1]['dof'] == range(3) def test_summation(): lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(30, 3), ['x', 'y', 'z']) with pytest.raises(RuntimeError): LabelTensor.summation([lt1, lt2]) lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all) lt_sum = LabelTensor.summation([lt1, lt2]) assert lt_sum.ndim == lt_sum.ndim assert lt_sum.shape[0] == 20 assert lt_sum.shape[1] == 3 assert lt_sum.full_labels[0] == labels_all[0] assert lt_sum.labels == ['x+x', 'y+y', 'z+z'] assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all() lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all) lt3 = LabelTensor(torch.zeros(20, 3), labels_all) lt_sum = LabelTensor.summation([lt1, lt2, lt3]) assert lt_sum.ndim == lt_sum.ndim assert lt_sum.shape[0] == 20 assert lt_sum.shape[1] == 3 assert lt_sum.full_labels[0] == labels_all[0] assert lt_sum.labels == ['x+x+x', 'y+y+y', 'z+z+z'] assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all() def test_append_3D(): data_1 = torch.rand(20, 3, 2) labels_1 = ['x', 'y'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 2) labels_2 = ['z', 'w'] lt2 = LabelTensor(data_2, labels_2) lt1 = lt1.append(lt2) assert lt1.shape == (20, 3, 4) assert lt1.full_labels[0]['dof'] == range(20) assert lt1.full_labels[1]['dof'] == range(3) assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w'] def test_append_2D(): data_1 = torch.rand(20, 2) labels_1 = ['x', 'y'] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2) labels_2 = ['z', 'w'] lt2 = LabelTensor(data_2, labels_2) lt1 = lt1.append(lt2, mode='cross') assert lt1.shape == (400, 4) assert lt1.full_labels[0]['dof'] == range(400) assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w'] def test_vstack_3D(): data_1 = torch.rand(20, 3, 2) labels_1 = { 1: { 'dof': ['a', 'b', 'c'], 'name': 'first' }, 2: { 'dof': ['x', 'y'], 'name': 'second' } } lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 2) labels_1 = { 1: { 'dof': ['a', 'b', 'c'], 'name': 'first' }, 2: { 'dof': ['x', 'y'], 'name': 'second' } } lt2 = LabelTensor(data_2, labels_1) lt_stacked = LabelTensor.vstack([lt1, lt2]) assert lt_stacked.shape == (40, 3, 2) assert lt_stacked.full_labels[0]['dof'] == range(40) assert lt_stacked.full_labels[1]['dof'] == ['a', 'b', 'c'] assert lt_stacked.full_labels[2]['dof'] == ['x', 'y'] assert lt_stacked.full_labels[1]['name'] == 'first' assert lt_stacked.full_labels[2]['name'] == 'second' def test_vstack_2D(): data_1 = torch.rand(20, 2) labels_1 = {1: {'dof': ['x', 'y'], 'name': 'second'}} lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2) labels_1 = {1: {'dof': ['x', 'y'], 'name': 'second'}} lt2 = LabelTensor(data_2, labels_1) lt_stacked = LabelTensor.vstack([lt1, lt2]) assert lt_stacked.shape == (40, 2) assert lt_stacked.full_labels[0]['dof'] == range(40) assert lt_stacked.full_labels[1]['dof'] == ['x', 'y'] assert lt_stacked.full_labels[0]['name'] == 0 assert lt_stacked.full_labels[1]['name'] == 'second' def test_sorting(): data = torch.ones(20, 5) data[:, 0] = data[:, 0] * 4 data[:, 1] = data[:, 1] * 2 data[:, 2] = data[:, 2] data[:, 3] = data[:, 3] * 5 data[:, 4] = data[:, 4] * 3 labels = ['d', 'b', 'a', 'e', 'c'] lt_data = LabelTensor(data, labels) lt_sorted = LabelTensor.sort_labels(lt_data) assert lt_sorted.shape == (20, 5) assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e'] assert torch.eq(lt_sorted.tensor[:, 0], torch.ones(20) * 1).all() assert torch.eq(lt_sorted.tensor[:, 1], torch.ones(20) * 2).all() assert torch.eq(lt_sorted.tensor[:, 2], torch.ones(20) * 3).all() assert torch.eq(lt_sorted.tensor[:, 3], torch.ones(20) * 4).all() assert torch.eq(lt_sorted.tensor[:, 4], torch.ones(20) * 5).all() data = torch.ones(20, 4, 5) data[:, 0, :] = data[:, 0] * 4 data[:, 1, :] = data[:, 1] * 2 data[:, 2, :] = data[:, 2] data[:, 3, :] = data[:, 3] * 3 labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}} lt_data = LabelTensor(data, labels) lt_sorted = LabelTensor.sort_labels(lt_data, dim=1) assert lt_sorted.shape == (20, 4, 5) assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd'] assert torch.eq(lt_sorted.tensor[:, 0, :], torch.ones(20, 5) * 1).all() assert torch.eq(lt_sorted.tensor[:, 1, :], torch.ones(20, 5) * 2).all() assert torch.eq(lt_sorted.tensor[:, 2, :], torch.ones(20, 5) * 3).all() assert torch.eq(lt_sorted.tensor[:, 3, :], torch.ones(20, 5) * 4).all()