import torch import pytest from pina import LabelTensor from pina.operators import grad, div, laplacian def func_vector(x): return x**2 def func_scalar(x): x_ = x.extract(['x']) y_ = x.extract(['y']) z_ = x.extract(['z']) return x_**2 + y_**2 + z_**2 data = torch.rand((20, 3)) inp = LabelTensor(data, ['x', 'y', 'z']).requires_grad_(True) labels = ['a', 'b', 'c'] tensor_v = LabelTensor(func_vector(inp), labels) tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0]) def test_grad_scalar_output(): grad_tensor_s = grad(tensor_s, inp) true_val = 2*inp assert grad_tensor_s.shape == inp.shape assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in inp.labels ] assert torch.allclose(grad_tensor_s, true_val) grad_tensor_s = grad(tensor_s, inp, d=['x', 'y']) assert grad_tensor_s.shape == (20, 2) assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y'] ] assert torch.allclose(grad_tensor_s, true_val) def test_grad_vector_output(): grad_tensor_v = grad(tensor_v, inp) true_val = torch.cat( (2*inp.extract(['x']), torch.zeros_like(inp.extract(['y'])), torch.zeros_like(inp.extract(['z'])), torch.zeros_like(inp.extract(['x'])), 2*inp.extract(['y']), torch.zeros_like(inp.extract(['z'])), torch.zeros_like(inp.extract(['x'])), torch.zeros_like(inp.extract(['y'])), 2*inp.extract(['z']) ), dim=1 ) assert grad_tensor_v.shape == (20, 9) assert grad_tensor_v.labels == [ f'd{j}d{i}' for j in tensor_v.labels for i in inp.labels ] assert torch.allclose(grad_tensor_v, true_val) grad_tensor_v = grad(tensor_v, inp, d=['x', 'y']) true_val = torch.cat( (2*inp.extract(['x']), torch.zeros_like(inp.extract(['y'])), torch.zeros_like(inp.extract(['x'])), 2*inp.extract(['y']), torch.zeros_like(inp.extract(['x'])), torch.zeros_like(inp.extract(['y'])) ), dim=1 ) assert grad_tensor_v.shape == (inp.shape[0], 6) assert grad_tensor_v.labels == [ f'd{j}d{i}' for j in tensor_v.labels for i in ['x', 'y'] ] assert torch.allclose(grad_tensor_v, true_val) def test_div_vector_output(): div_tensor_v = div(tensor_v, inp) true_val = 2*torch.sum(inp, dim=1).reshape(-1,1) assert div_tensor_v.shape == (20, 1) assert div_tensor_v.labels == [f'dadx+dbdy+dcdz'] assert torch.allclose(div_tensor_v, true_val) div_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'y']) true_val = 2*torch.sum(inp.extract(['x', 'y']), dim=1).reshape(-1,1) assert div_tensor_v.shape == (inp.shape[0], 1) assert div_tensor_v.labels == [f'dadx+dbdy'] assert torch.allclose(div_tensor_v, true_val) def test_laplacian_scalar_output(): laplace_tensor_s = laplacian(tensor_s, inp) true_val = 6*torch.ones_like(laplace_tensor_s) assert laplace_tensor_s.shape == tensor_s.shape assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] assert torch.allclose(laplace_tensor_s, true_val) laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y']) true_val = 4*torch.ones_like(laplace_tensor_s) assert laplace_tensor_s.shape == tensor_s.shape assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] assert torch.allclose(laplace_tensor_s, true_val) def test_laplacian_vector_output(): laplace_tensor_v = laplacian(tensor_v, inp) print(laplace_tensor_v.labels) print(tensor_v.labels) true_val = 2*torch.ones_like(tensor_v) assert laplace_tensor_v.shape == tensor_v.shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in tensor_v.labels ] assert torch.allclose(laplace_tensor_v, true_val) laplace_tensor_v = laplacian(tensor_v, inp, components=['a', 'b'], d=['x', 'y']) true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b'])) assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in ['a', 'b'] ] assert torch.allclose(laplace_tensor_v, true_val) def test_laplacian_vector_output2(): x = LabelTensor(torch.linspace(0,1,10, requires_grad=True).reshape(-1,1), labels = ['x']) y = LabelTensor(torch.linspace(3,4,10, requires_grad=True).reshape(-1,1), labels = ['y']) input_ = LabelTensor(torch.cat((x,y), dim = 1), labels = ['x', 'y']) # Construct two scalar functions: # u = x**2 + y**2 # v = x**2 - y**2 u = LabelTensor(input_.extract('x')**2 + input_.extract('y')**2, labels='u') v = LabelTensor(input_.extract('x')**2 - input_.extract('y')**2, labels='v') # Define a vector-valued function, whose components are u and v. f = LabelTensor(torch.cat((u,v), dim = 1), labels = ['u', 'v']) # Compute the scalar laplacian of both u and v: # Lap(u) = [4, 4, 4, ..., 4] # Lap(v) = [0, 0, 0, ..., 0] lap_u = laplacian(u, input_, components=['u']) lap_v = laplacian(v, input_, components=['v']) # Compute the laplacian of f: the two columns should correspond # to the laplacians of u and v, respectively... lap_f = laplacian(f, input_, components=['u', 'v']) assert torch.allclose(lap_f.extract('ddu'), lap_u) assert torch.allclose(lap_f.extract('ddv'), lap_v)