"""Module for FeedForward model""" import torch import torch.nn as nn from pina.label_tensor import LabelTensor class FeedForward(torch.nn.Module): """ The PINA implementation of feedforward network, also refered as multilayer perceptron. :param list(str) input_variables: the list containing the labels corresponding to the input components of the model. :param list(str) output_variables: the list containing the labels corresponding to the components of the output computed by the model. :param int inner_size: number of neurons in the hidden layer(s). Default is 20. :param int n_layers: number of hidden layers. Default is 2. :param func: the activation function to use. If a single :class:`torch.nn.Module` is passed, this is used as activation function after any layers, except the last one. If a list of Modules is passed, they are used as activation functions at any layers, in order. :param iterable(int) layers: a list containing the number of neurons for any hidden layers. If specified, the parameters `n_layers` e `inner_size` are not considered. :param iterable(torch.nn.Module) extra_features: the additional input features to use ad augmented input. :param bool bias: If `True` the MLP will consider some bias. """ def __init__(self, input_variables, output_variables, inner_size=20, n_layers=2, func=nn.Tanh, layers=None, extra_features=None, bias=True): """ """ super().__init__() if extra_features is None: extra_features = [] self.extra_features = nn.Sequential(*extra_features) if isinstance(input_variables, int): self.input_variables = None self.input_dimension = input_variables elif isinstance(input_variables, (tuple, list)): self.input_variables = input_variables self.input_dimension = len(input_variables) if isinstance(output_variables, int): self.output_variables = None self.output_dimension = output_variables elif isinstance(output_variables, (tuple, list)): self.output_variables = output_variables self.output_dimension = len(output_variables) n_features = len(extra_features) if layers is None: layers = [inner_size] * n_layers tmp_layers = layers.copy() tmp_layers.insert(0, self.input_dimension+n_features) tmp_layers.append(self.output_dimension) self.layers = [] for i in range(len(tmp_layers)-1): self.layers.append( nn.Linear(tmp_layers[i], tmp_layers[i + 1], bias=bias) ) if isinstance(func, list): self.functions = func else: self.functions = [func for _ in range(len(self.layers)-1)] if len(self.layers) != len(self.functions) + 1: raise RuntimeError('uncosistent number of layers and functions') unique_list = [] for layer, func in zip(self.layers[:-1], self.functions): unique_list.append(layer) if func is not None: unique_list.append(func()) unique_list.append(self.layers[-1]) self.model = nn.Sequential(*unique_list) def forward(self, x): """ Defines the computation performed at every call. :param x: the input tensor. :type x: :class:`pina.LabelTensor` :return: the output computed by the model. :rtype: LabelTensor """ if self.input_variables: x = x.extract(self.input_variables) for feature in self.extra_features: x = x.append(feature(x)) output = self.model(x).as_subclass(LabelTensor) if self.output_variables: output.labels = self.output_variables return output