import torch import pytest from pina import Condition, LabelTensor, Graph from pina.condition import InputOutputPointsCondition, DomainEquationCondition from pina.graph import RadiusGraph from pina.problem import AbstractProblem, SpatialProblem from pina.domain import CartesianDomain from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue from pina.operators import laplacian from pina.collector import Collector def test_supervised_tensor_collector(): class SupervisedProblem(AbstractProblem): output_variables = None conditions = { 'data1': Condition(input_points=torch.rand((10, 2)), output_points=torch.rand((10, 2))), 'data2': Condition(input_points=torch.rand((20, 2)), output_points=torch.rand((20, 2))), 'data3': Condition(input_points=torch.rand((30, 2)), output_points=torch.rand((30, 2))), } problem = SupervisedProblem() collector = Collector(problem) for v in collector.conditions_name.values(): assert v in problem.conditions.keys() def test_pinn_collector(): def laplace_equation(input_, output_): force_term = (torch.sin(input_.extract(['x']) * torch.pi) * torch.sin(input_.extract(['y']) * torch.pi)) delta_u = laplacian(output_.extract(['u']), input_) return delta_u - force_term my_laplace = Equation(laplace_equation) in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y']) out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u']) class Poisson(SpatialProblem): output_variables = ['u'] spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) conditions = { 'gamma1': Condition(domain=CartesianDomain({ 'x': [0, 1], 'y': 1 }), equation=FixedValue(0.0)), 'gamma2': Condition(domain=CartesianDomain({ 'x': [0, 1], 'y': 0 }), equation=FixedValue(0.0)), 'gamma3': Condition(domain=CartesianDomain({ 'x': 1, 'y': [0, 1] }), equation=FixedValue(0.0)), 'gamma4': Condition(domain=CartesianDomain({ 'x': 0, 'y': [0, 1] }), equation=FixedValue(0.0)), 'D': Condition(domain=CartesianDomain({ 'x': [0, 1], 'y': [0, 1] }), equation=my_laplace), 'data': Condition(input_points=in_, output_points=out_) } def poisson_sol(self, pts): return -(torch.sin(pts.extract(['x']) * torch.pi) * torch.sin(pts.extract(['y']) * torch.pi)) / ( 2 * torch.pi ** 2) truth_solution = poisson_sol problem = Poisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] problem.discretise_domain(10, 'grid', domains=boundaries) problem.discretise_domain(10, 'grid', domains='D') collector = Collector(problem) collector.store_fixed_data() collector.store_sample_domains() for k, v in problem.conditions.items(): if isinstance(v, InputOutputPointsCondition): assert list(collector.data_collections[k].keys()) == [ 'input_points', 'output_points'] for k, v in problem.conditions.items(): if isinstance(v, DomainEquationCondition): assert list(collector.data_collections[k].keys()) == [ 'input_points', 'equation'] def test_supervised_graph_collector(): pos = torch.rand((100, 3)) x = [torch.rand((100, 3)) for _ in range(10)] graph_list_1 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4) out_1 = torch.rand((10, 100, 3)) pos = torch.rand((50, 3)) x = [torch.rand((50, 3)) for _ in range(10)] graph_list_2 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4) out_2 = torch.rand((10, 50, 3)) class SupervisedProblem(AbstractProblem): output_variables = None conditions = { 'data1': Condition(input_points=graph_list_1, output_points=out_1), 'data2': Condition(input_points=graph_list_2, output_points=out_2), } problem = SupervisedProblem() collector = Collector(problem) collector.store_fixed_data() # assert all(collector._is_conditions_ready.values()) for v in collector.conditions_name.values(): assert v in problem.conditions.keys()