import pytest import torch from pina import LabelTensor, Condition from pina.model import FeedForward from pina.trainer import Trainer from pina.solvers import PINN from pina.condition import ( InputOutputPointsCondition, InputPointsEquationCondition, DomainEquationCondition ) from pina.problem.zoo import ( Poisson2DSquareProblem as Poisson, InversePoisson2DSquareProblem as InversePoisson ) from torch._dynamo.eval_frame import OptimizedModule # define problems and model problem = Poisson() problem.discretise_domain(50) inverse_problem = InversePoisson() inverse_problem.discretise_domain(50) model = FeedForward( len(problem.input_variables), len(problem.output_variables) ) # add input-output condition to test supervised learning input_pts = torch.rand(50, len(problem.input_variables)) input_pts = LabelTensor(input_pts, problem.input_variables) output_pts = torch.rand(50, len(problem.output_variables)) output_pts = LabelTensor(output_pts, problem.output_variables) problem.conditions['data'] = Condition( input_points=input_pts, output_points=output_pts ) @pytest.mark.parametrize("problem", [problem, inverse_problem]) def test_constructor(problem): solver = PINN(problem=problem, model=model) assert solver.accepted_conditions_types == ( InputOutputPointsCondition, InputPointsEquationCondition, DomainEquationCondition ) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_train(problem, batch_size, compile): solver = PINN(model=model, problem=problem) trainer = Trainer(solver=solver, max_epochs=2, accelerator='cpu', batch_size=batch_size, train_size=1., val_size=0., test_size=0., compile=compile) trainer.train() @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_validation(problem, batch_size, compile): solver = PINN(model=model, problem=problem) trainer = Trainer(solver=solver, max_epochs=2, accelerator='cpu', batch_size=batch_size, train_size=0.9, val_size=0.1, test_size=0., compile=compile) trainer.train() if trainer.compile: assert(isinstance(solver.model, OptimizedModule)) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_test(problem, batch_size, compile): solver = PINN(model=model, problem=problem) trainer = Trainer(solver=solver, max_epochs=2, accelerator='cpu', batch_size=batch_size, train_size=0.7, val_size=0.2, test_size=0.1, compile=compile) trainer.test() @pytest.mark.parametrize("problem", [problem, inverse_problem]) def test_train_load_restore(problem): dir = "tests/test_solvers/tmp" problem = problem solver = PINN(model=model, problem=problem) trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu', batch_size=None, train_size=0.7, val_size=0.2, test_size=0.1, default_root_dir=dir) trainer.train() # restore new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu') new_trainer.train( ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' + 'epoch=4-step=5.ckpt') # loading new_solver = PINN.load_from_checkpoint( f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt', problem=problem, model=model) test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables) assert new_solver.forward(test_pts).shape == (20, 1) assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape torch.testing.assert_close( new_solver.forward(test_pts), solver.forward(test_pts)) # rm directories import shutil shutil.rmtree('tests/test_solvers/tmp')