# import torch # import pytest # from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset # input_tensor = torch.rand((100, 10)) # output_tensor = torch.rand((100, 2)) # input_tensor_2 = torch.rand((50, 10)) # output_tensor_2 = torch.rand((50, 2)) # conditions_dict_single = { # "data": { # "input": input_tensor, # "target": output_tensor, # } # } # conditions_dict_single_multi = { # "data_1": { # "input": input_tensor, # "target": output_tensor, # }, # "data_2": { # "input": input_tensor_2, # "target": output_tensor_2, # }, # } # max_conditions_lengths_single = {"data": 100} # max_conditions_lengths_multi = {"data_1": 100, "data_2": 50} # @pytest.mark.parametrize( # "conditions_dict, max_conditions_lengths", # [ # (conditions_dict_single, max_conditions_lengths_single), # (conditions_dict_single_multi, max_conditions_lengths_multi), # ], # ) # def test_constructor_tensor(conditions_dict, max_conditions_lengths): # dataset = PinaDatasetFactory( # conditions_dict, # max_conditions_lengths=max_conditions_lengths, # automatic_batching=True, # ) # assert isinstance(dataset, PinaTensorDataset) # def test_getitem_single(): # dataset = PinaDatasetFactory( # conditions_dict_single, # max_conditions_lengths=max_conditions_lengths_single, # automatic_batching=False, # ) # tensors = dataset.fetch_from_idx_list([i for i in range(70)]) # assert isinstance(tensors, dict) # assert list(tensors.keys()) == ["data"] # assert sorted(list(tensors["data"].keys())) == ["input", "target"] # assert isinstance(tensors["data"]["input"], torch.Tensor) # assert tensors["data"]["input"].shape == torch.Size((70, 10)) # assert isinstance(tensors["data"]["target"], torch.Tensor) # assert tensors["data"]["target"].shape == torch.Size((70, 2)) # def test_getitem_multi(): # dataset = PinaDatasetFactory( # conditions_dict_single_multi, # max_conditions_lengths=max_conditions_lengths_multi, # automatic_batching=False, # ) # tensors = dataset.fetch_from_idx_list([i for i in range(70)]) # assert isinstance(tensors, dict) # assert list(tensors.keys()) == ["data_1", "data_2"] # assert sorted(list(tensors["data_1"].keys())) == ["input", "target"] # assert isinstance(tensors["data_1"]["input"], torch.Tensor) # assert tensors["data_1"]["input"].shape == torch.Size((70, 10)) # assert isinstance(tensors["data_1"]["target"], torch.Tensor) # assert tensors["data_1"]["target"].shape == torch.Size((70, 2)) # assert sorted(list(tensors["data_2"].keys())) == ["input", "target"] # assert isinstance(tensors["data_2"]["input"], torch.Tensor) # assert tensors["data_2"]["input"].shape == torch.Size((50, 10)) # assert isinstance(tensors["data_2"]["target"], torch.Tensor) # assert tensors["data_2"]["target"].shape == torch.Size((50, 2))