"""Module for Location class.""" import torch from .location import Location from ..utils import check_consistency from ..label_tensor import LabelTensor import random from .operation_interface import OperationInterface class Exclusion(OperationInterface): """ PINA implementation of Exclusion of Domains.""" def __init__(self, geometries): """ PINA implementation of Exclusion of Domains. Given two sets :math:`A` and :math:`B` then the domain difference is defined as: ..:math: A \setminus B = \{x \mid x \in A \text{ and } x \in B\ \text{ and } x \not\in (A \text{ or } B)}, with :math:`x` a point in :math:`\mathbb{R}^N` and :math:`N` the dimension of the geometry space. :param list geometries: A list of geometries from 'pina.geometry' such as 'EllipsoidDomain' or 'CartesianDomain'. :Example: # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) # Create a Exclusion of the ellipsoid domains >>> exclusion = Exclusion([ellipsoid1, ellipsoid2]) """ super().__init__(geometries) def is_inside(self, point, check_border=False): """Check if a point is inside the Exclusion domain. :param point: Point to be checked. :type point: torch.Tensor :param bool check_border: If True, the border is considered inside. :return: True if the point is inside the Exclusion domain, False otherwise. :rtype: bool """ flag = 0 for geometry in self.geometries: if geometry.is_inside(point, check_border): flag += 1 return flag == 1 def sample(self, n, mode='random', variables='all'): """Sample routine for exclusion domain. :param n: Number of points to sample in the shape. :type n: int :param mode: Mode for sampling, defaults to 'random'. Available modes include: random sampling, 'random'. :type mode: str, optional :param variables: pinn variable to be sampled, defaults to 'all'. :type variables: str or list[str], optional :Example: # Create two Cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) # Create a Exclusion of the ellipsoid domains >>> Exclusion = Exclusion([cartesian1, cartesian2]) >>> Exclusion.sample(n=5) LabelTensor([[2.4187, 1.5792], [2.7456, 2.3868], [2.3830, 1.7037], [0.8636, 1.8453], [0.1978, 0.3526]]) >>> len(Exclusion.sample(n=5) 5 """ if mode != 'random': raise NotImplementedError( f'{mode} is not a valid mode for sampling.') sampled = [] # calculate the number of points to sample for each geometry and the remainder. remainder = n % len(self.geometries) num_points = n // len(self.geometries) # sample the points # NB. geometries as shuffled since if we sample # multiple times just one point, we would end # up sampling only from the first geometry. iter_ = random.sample(self.geometries, len(self.geometries)) for i, geometry in enumerate(iter_): sampled_points = [] # int(i < remainder) is one only if we have a remainder # different than zero. Notice that len(geometries) is # always smaller than remaider. # makes sure point is uniquely inside 1 shape. while len(sampled_points) < (num_points + int(i < remainder)): sample = geometry.sample(1, mode, variables) # if not self.is_inside(sample) --> will be the intersection if self.is_inside(sample): sampled_points.append(sample) sampled += sampled_points return LabelTensor(torch.cat(sampled), labels=self.variables)