import torch import pytest from pina.problem import SpatialProblem from pina.operators import nabla from pina.geometry import CartesianDomain from pina import Condition, LabelTensor, PINN from pina.trainer import Trainer from pina.model import FeedForward from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue from pina.plotter import Plotter from pina.loss import LpLoss def laplace_equation(input_, output_): force_term = (torch.sin(input_.extract(['x'])*torch.pi) * torch.sin(input_.extract(['y'])*torch.pi)) nabla_u = nabla(output_.extract(['u']), input_) return nabla_u - force_term my_laplace = Equation(laplace_equation) in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y']) out_ = LabelTensor(torch.tensor([[0.]]), ['u']) class Poisson(SpatialProblem): output_variables = ['u'] spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) conditions = { 'gamma1': Condition( location=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.0)), 'gamma2': Condition( location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.0)), 'gamma3': Condition( location=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.0)), 'gamma4': Condition( location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.0)), 'D': Condition( input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']), equation=my_laplace), 'data': Condition( input_points=in_, output_points=out_) } def poisson_sol(self, pts): return -( torch.sin(pts.extract(['x'])*torch.pi) * torch.sin(pts.extract(['y'])*torch.pi) )/(2*torch.pi**2) truth_solution = poisson_sol class myFeature(torch.nn.Module): """ Feature: sin(x) """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): t = (torch.sin(x.extract(['x'])*torch.pi) * torch.sin(x.extract(['y'])*torch.pi)) return LabelTensor(t, ['sin(x)sin(y)']) # make the problem poisson_problem = Poisson() model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables)) model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables)) extra_feats = [myFeature()] def test_constructor(): PINN(problem = poisson_problem, model=model, extra_features=None) def test_constructor_extra_feats(): model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables)) PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats) def test_train_cpu(): poisson_problem = Poisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 poisson_problem.discretise_domain(n, 'grid', locations=boundaries) pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'}) trainer.train() # # TODO fix asap. Basically sampling few variables # # works only if both variables are in a range. # # if one is fixed and the other not, this will # # not work. This test also needs to be fixed and # # insert in test problem not in test pinn. # def test_train_cpu_sampling_few_vars(): # poisson_problem = Poisson() # boundaries = ['gamma1', 'gamma2', 'gamma3'] # n = 10 # poisson_problem.discretise_domain(n, 'grid', locations=boundaries) # poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['x']) # poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['y']) # pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) # trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'}) # trainer.train() def test_train_extra_feats_cpu(): poisson_problem = Poisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 poisson_problem.discretise_domain(n, 'grid', locations=boundaries) pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats) trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'}) trainer.train() # TODO, fix GitHub actions to run also on GPU # def test_train_gpu(): # poisson_problem = Poisson() # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] # n = 10 # poisson_problem.discretise_domain(n, 'grid', locations=boundaries) # pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) # trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'}) # trainer.train() """ def test_train_gpu(): #TODO fix ASAP poisson_problem = Poisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 poisson_problem.discretise_domain(n, 'grid', locations=boundaries) poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'}) trainer.train() def test_train_2(): boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 expected_keys = [[], list(range(0, 50, 3))] param = [0, 3] for i, truth_key in zip(param, expected_keys): pinn = PINN(problem, model) pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(50, save_loss=i) assert list(pinn.history_loss.keys()) == truth_key def test_train_extra_feats(): pinn = PINN(problem, model_extra_feat, [myFeature()]) boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(5) def test_train_2_extra_feats(): boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 expected_keys = [[], list(range(0, 50, 3))] param = [0, 3] for i, truth_key in zip(param, expected_keys): pinn = PINN(problem, model_extra_feat, [myFeature()]) pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(50, save_loss=i) assert list(pinn.history_loss.keys()) == truth_key def test_train_with_optimizer_kwargs(): boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 expected_keys = [[], list(range(0, 50, 3))] param = [0, 3] for i, truth_key in zip(param, expected_keys): pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3}) pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(50, save_loss=i) assert list(pinn.history_loss.keys()) == truth_key def test_train_with_lr_scheduler(): boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 10 expected_keys = [[], list(range(0, 50, 3))] param = [0, 3] for i, truth_key in zip(param, expected_keys): pinn = PINN( problem, model, lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR, lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False} ) pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(50, save_loss=i) assert list(pinn.history_loss.keys()) == truth_key # def test_train_batch(): # pinn = PINN(problem, model, batch_size=6) # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] # n = 10 # pinn.discretise_domain(n, 'grid', locations=boundaries) # pinn.discretise_domain(n, 'grid', locations=['D']) # pinn.train(5) # def test_train_batch_2(): # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] # n = 10 # expected_keys = [[], list(range(0, 50, 3))] # param = [0, 3] # for i, truth_key in zip(param, expected_keys): # pinn = PINN(problem, model, batch_size=6) # pinn.discretise_domain(n, 'grid', locations=boundaries) # pinn.discretise_domain(n, 'grid', locations=['D']) # pinn.train(50, save_loss=i) # assert list(pinn.history_loss.keys()) == truth_key if torch.cuda.is_available(): # def test_gpu_train(): # pinn = PINN(problem, model, batch_size=20, device='cuda') # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] # n = 100 # pinn.discretise_domain(n, 'grid', locations=boundaries) # pinn.discretise_domain(n, 'grid', locations=['D']) # pinn.train(5) def test_gpu_train_nobatch(): pinn = PINN(problem, model, batch_size=None, device='cuda') boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] n = 100 pinn.discretise_domain(n, 'grid', locations=boundaries) pinn.discretise_domain(n, 'grid', locations=['D']) pinn.train(5) """