import torch import pytest from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset input_tensor = torch.rand((100, 10)) output_tensor = torch.rand((100, 2)) input_tensor_2 = torch.rand((50, 10)) output_tensor_2 = torch.rand((50, 2)) conditions_dict_single = { 'data': { 'input': input_tensor, 'target': output_tensor, } } conditions_dict_single_multi = { 'data_1': { 'input': input_tensor, 'target': output_tensor, }, 'data_2': { 'input': input_tensor_2, 'target': output_tensor_2, } } max_conditions_lengths_single = { 'data': 100 } max_conditions_lengths_multi = { 'data_1': 100, 'data_2': 50 } @pytest.mark.parametrize( "conditions_dict, max_conditions_lengths", [ (conditions_dict_single, max_conditions_lengths_single), (conditions_dict_single_multi, max_conditions_lengths_multi) ] ) def test_constructor_tensor(conditions_dict, max_conditions_lengths): dataset = PinaDatasetFactory(conditions_dict, max_conditions_lengths=max_conditions_lengths, automatic_batching=True) assert isinstance(dataset, PinaTensorDataset) def test_getitem_single(): dataset = PinaDatasetFactory(conditions_dict_single, max_conditions_lengths=max_conditions_lengths_single, automatic_batching=False) tensors = dataset.fetch_from_idx_list([i for i in range(70)]) assert isinstance(tensors, dict) assert list(tensors.keys()) == ['data'] assert sorted(list(tensors['data'].keys())) == [ 'input', 'target'] assert isinstance(tensors['data']['input'], torch.Tensor) assert tensors['data']['input'].shape == torch.Size((70, 10)) assert isinstance(tensors['data']['target'], torch.Tensor) assert tensors['data']['target'].shape == torch.Size((70, 2)) def test_getitem_multi(): dataset = PinaDatasetFactory(conditions_dict_single_multi, max_conditions_lengths=max_conditions_lengths_multi, automatic_batching=False) tensors = dataset.fetch_from_idx_list([i for i in range(70)]) assert isinstance(tensors, dict) assert list(tensors.keys()) == ['data_1', 'data_2'] assert sorted(list(tensors['data_1'].keys())) == [ 'input', 'target'] assert isinstance(tensors['data_1']['input'], torch.Tensor) assert tensors['data_1']['input'].shape == torch.Size((70, 10)) assert isinstance(tensors['data_1']['target'], torch.Tensor) assert tensors['data_1']['target'].shape == torch.Size((70, 2)) assert sorted(list(tensors['data_2'].keys())) == [ 'input', 'target'] assert isinstance(tensors['data_2']['input'], torch.Tensor) assert tensors['data_2']['input'].shape == torch.Size((50, 10)) assert isinstance(tensors['data_2']['target'], torch.Tensor) assert tensors['data_2']['target'].shape == torch.Size((50, 2))