import torch import pytest from pina import LabelTensor from pina.operators import grad, div, laplacian def func_vec(x): return x**2 def func_scalar(x): print('X') x_ = x.extract(['x']) y_ = x.extract(['y']) mu_ = x.extract(['mu']) return x_**2 + y_**2 + mu_**3 data = torch.rand((20, 3), requires_grad=True) inp = LabelTensor(data, ['x', 'y', 'mu']) labels = ['a', 'b', 'c'] tensor_v = LabelTensor(func_vec(inp), labels) tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0]) def test_grad_scalar_output(): grad_tensor_s = grad(tensor_s, inp) assert grad_tensor_s.shape == inp.shape assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in inp.labels ] grad_tensor_s = grad(tensor_s, inp, d=['x', 'y']) assert grad_tensor_s.shape == (inp.shape[0], 2) assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y'] ] def test_grad_vector_output(): grad_tensor_v = grad(tensor_v, inp) assert grad_tensor_v.shape == (20, 9) grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu']) assert grad_tensor_v.shape == (inp.shape[0], 6) def test_div_vector_output(): grad_tensor_v = div(tensor_v, inp) assert grad_tensor_v.shape == (20, 1) grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu']) assert grad_tensor_v.shape == (inp.shape[0], 1) def test_laplacian_scalar_output(): laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y']) assert laplace_tensor_s.shape == tensor_s.shape assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] true_val = 4*torch.ones_like(laplace_tensor_s) assert all((laplace_tensor_s - true_val == 0).flatten()) def test_laplacian_vector_output(): laplace_tensor_v = laplacian(tensor_v, inp) assert laplace_tensor_v.shape == tensor_v.shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in tensor_v.labels ] laplace_tensor_v = laplacian(tensor_v, inp, components=['a', 'b'], d=['x', 'y']) assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in ['a', 'b'] ] true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b'])) assert all((laplace_tensor_v - true_val == 0).flatten())