import argparse import torch from torch.nn import Softplus from pina import PINN as pPINN from problems.parametric_poisson import ParametricPoisson from pina.model import FeedForward class myFeature(torch.nn.Module): """ """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): return torch.exp(- 2*(x['x'] - x['mu1'])**2 - 2*(x['y'] - x['mu2'])**2) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature()] if args.features else [] poisson_problem = ParametricPoisson() model = FeedForward( layers=[200, 40, 10], output_variables=poisson_problem.output_variables, input_variables=poisson_problem.input_variables, func=Softplus, extra_features=feat ) pinn = pPINN( poisson_problem, model, lr=0.0006, regularizer=1e-6, lr_accelerate=None) if args.s: pinn.span_pts(2000, 'random', ['D']) pinn.span_pts(200, 'random', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) pinn.train(10000, 10) pinn.save_state('pina.poisson_param') else: pinn.load_state('pina.poisson_param')