"""Formulation of the Poisson problem in a square domain.""" import torch from ... import Condition from ...operator import laplacian from ...problem import SpatialProblem from ...domain import CartesianDomain from ...equation import Equation, FixedValue def laplace_equation(input_, output_): """ Implementation of the laplace equation. :param LabelTensor input_: Input data of the problem. :param LabelTensor output_: Output data of the problem. :return: The residual of the laplace equation. :rtype: LabelTensor """ force_term = ( torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(input_.extract(["y"]) * torch.pi) * (2 * torch.pi**2) ) delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"]) return delta_u - force_term class Poisson2DSquareProblem(SpatialProblem): r""" Implementation of the 2-dimensional Poisson problem in the square domain :math:`[0, 1] \times [0, 1]`. :Example: >>> problem = Poisson2DSquareProblem() """ output_variables = ["u"] spatial_domain = CartesianDomain({"x": [0, 1], "y": [0, 1]}) domains = { "D": CartesianDomain({"x": [0, 1], "y": [0, 1]}), "g1": CartesianDomain({"x": [0, 1], "y": 1.0}), "g2": CartesianDomain({"x": [0, 1], "y": 0.0}), "g3": CartesianDomain({"x": 1.0, "y": [0, 1]}), "g4": CartesianDomain({"x": 0.0, "y": [0, 1]}), } conditions = { "g1": Condition(domain="g1", equation=FixedValue(0.0)), "g2": Condition(domain="g2", equation=FixedValue(0.0)), "g3": Condition(domain="g3", equation=FixedValue(0.0)), "g4": Condition(domain="g4", equation=FixedValue(0.0)), "D": Condition(domain="D", equation=Equation(laplace_equation)), } def solution(self, pts): """ Implementation of the analytical solution of the Poisson problem. :param LabelTensor pts: Points where the solution is evaluated. :return: The analytical solution of the Poisson problem. :rtype: LabelTensor """ sol = -( torch.sin(pts.extract(["x"]) * torch.pi) * torch.sin(pts.extract(["y"]) * torch.pi) ) sol.labels = self.output_variables return sol