# import numpy as np # import torch # from pina.problem import Problem # from pina.segment import Segment # from pina.cube import Cube # from pina.problem2d import Problem2D # xmin, xmax, ymin, ymax = -1, 1, -1, 1 # class ParametricEllipticOptimalControl(Problem2D): # def __init__(self, alpha=1): # def term1(input_, param_, output_): # grad_p = self.grad(output_['p'], input_) # gradgrad_p_x1 = self.grad(grad_p['x1'], input_) # gradgrad_p_x2 = self.grad(grad_p['x2'], input_) # return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2']) # def term2(input_, param_, output_): # grad_y = self.grad(output_['y'], input_) # gradgrad_y_x1 = self.grad(grad_y['x1'], input_) # gradgrad_y_x2 = self.grad(grad_y['x2'], input_) # return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param'] # def term3(input_, param_, output_): # return output_['p'] - output_['u_param']*alpha # def term(input_, param_, output_): # return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_) # def nil_dirichlet(input_, param_, output_): # y_value = 0.0 # p_value = 0.0 # return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value) # self.conditions = { # 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet}, # 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet}, # 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet}, # 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet}, # 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term}, # #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2}, # #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3} # } # self.input_variables = ['x1', 'x2'] # self.output_variables = ['u', 'p', 'y'] # self.parameters = ['mu'] # self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]]) # self.parameter_domain = np.array([[0.5, 3]]) raise NotImplementedError('not available problem at the moment...')