{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial: Multiscale PDE learning with Fourier Feature Network\n", "This tutorial presents how to solve with Physics-Informed Neural Networks (PINNs)\n", "a PDE characterized by multiscale behaviour, as\n", "presented in [*On the eigenvector bias of Fourier feature networks: From regression to solving\n", "multi-scale PDEs with physics-informed neural networks*](\n", "https://doi.org/10.1016/j.cma.2021.113938). \n", "\n", "First of all, some useful imports." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", "from pina import Condition, Plotter, Trainer, Plotter\n", "from pina.problem import SpatialProblem\n", "from pina.operators import laplacian\n", "from pina.solvers import PINN, SAPINN\n", "from pina.model.layers import FourierFeatureEmbedding\n", "from pina.loss import LpLoss\n", "from pina.geometry import CartesianDomain\n", "from pina.equation import Equation, FixedValue\n", "from pina.model import FeedForward\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multiscale Problem\n", "\n", "We begin by presenting the problem which also can be found in Section 2 of [*On the eigenvector bias of Fourier feature networks: From regression to solving\n", "multi-scale PDEs with physics-informed neural networks*](\n", "https://doi.org/10.1016/j.cma.2021.113938). The one-dimensional Poisson problem we aim to solve is mathematically written as:\n", "\n", "\\begin{equation}\n", "\\begin{cases}\n", "\\Delta u (x) + f(x) = 0 \\quad x \\in [0,1], \\\\\n", "u(x) = 0 \\quad x \\in \\partial[0,1], \\\\\n", "\\end{cases}\n", "\\end{equation}\n", "\n", "We impose the solution as $u(x) = \\sin(2\\pi x) + 0.1 \\sin(50\\pi x)$ and obtain the force term $f(x) = (2\\pi)^2 \\sin(2\\pi x) + 0.1 (50 \\pi)^2 \\sin(50\\pi x)$.\n", "Though this example is simple and pedagogical, it is worth noting that\n", "the solution exhibits low frequency in the macro-scale and high frequency in the micro-scale, which resembles many\n", "practical scenarios.\n", "\n", "\n", "In **PINA** this problem is written, as always, as a class [see here for a tutorial on the Problem class](https://mathlab.github.io/PINA/_rst/tutorials/tutorial1/tutorial.html). Below you can find the `Poisson` problem which is mathmatically described above." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class Poisson(SpatialProblem):\n", " output_variables = ['u']\n", " spatial_domain = CartesianDomain({'x': [0, 1]})\n", "\n", " def poisson_equation(input_, output_):\n", " x = input_.extract('x')\n", " u_xx = laplacian(output_, input_, components=['u'], d=['x'])\n", " f = ((2*torch.pi)**2)*torch.sin(2*torch.pi*x) + 0.1*((50*torch.pi)**2)*torch.sin(50*torch.pi*x)\n", " return u_xx + f\n", "\n", " # here we write the problem conditions\n", " conditions = {\n", " 'gamma0' : Condition(location=CartesianDomain({'x': 0}),\n", " equation=FixedValue(0)),\n", " 'gamma1' : Condition(location=CartesianDomain({'x': 1}),\n", " equation=FixedValue(0)),\n", " 'D': Condition(location=spatial_domain,\n", " equation=Equation(poisson_equation)),\n", " }\n", "\n", " def truth_solution(self, x):\n", " return torch.sin(2*torch.pi*x) + 0.1*torch.sin(50*torch.pi*x)\n", "\n", "problem = Poisson()\n", "\n", "# let's discretise the domain\n", "problem.discretise_domain(128, 'grid')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A standard PINN approach would be to fit this model using a Feed Forward (fully connected) Neural Network. For a conventional fully-connected neural network is easy to\n", "approximate a function $u$, given sufficient data inside the computational domain. However solving high-frequency or multi-scale problems presents great challenges to PINNs especially when the number of data cannot capture the different scales.\n", "\n", "Below we run a simulation using the `PINN` solver and the self adaptive `SAPINN` solver, using a [`FeedForward`](https://mathlab.github.io/PINA/_modules/pina/model/feed_forward.html#FeedForward) model. We used a `MultiStepLR` scheduler to decrease the learning rate slowly during training (it takes around 2 minutes to run on CPU)." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "GPU available: True (mps), used: False\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 150.58it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3] " ] }, { "name": "stderr", "output_type": "stream", "text": [ "`Trainer.fit` stopped: `max_epochs=5000` reached.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 97.66it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3] \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "GPU available: True (mps), used: False\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 88.18it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5] " ] }, { "name": "stderr", "output_type": "stream", "text": [ "`Trainer.fit` stopped: `max_epochs=5000` reached.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 65.77it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAMsCAYAAADJXzRsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNjklEQVR4nOzdd3hUZcLG4efMpHcSUiih9w4JoVlQUayLoqhIb4Ig9ro21v1cUNe101tAROzYXXUVld6R3jtJCJCEJKTOfH+cEIy0hJQzk/zu65qLZDJz5pmhneec97yv4XQ6nQIAAACAUrBZHQAAAACA+6NYAAAAACg1igUAAACAUqNYAAAAACg1igUAAACAUqNYAAAAACg1igUAAACAUqNYAAAAACg1igUAAACAUqNYAABc1rhx42QYRplvt169eho8eHCZbxcAqjKKBQC4oNmzZ8swjMKbj4+PmjRpovvvv1+JiYmFj/vll19kGIY+/vjjs57r4+OjQ4cOnbXt7t27q1WrVkXuq1evngzD0NixY896/Lle43yOHj2qBx98UM2aNZOvr68iIiIUFxenJ598Uunp6SX5CEptyZIlGjdunFJSUir0dQGgqqJYAIALe/HFFzV37ly988476tq1qyZNmqQuXbooMzPzos/Nzs7WhAkTSvR606ZN0+HDhy8p6/HjxxUbG6s5c+bopptu0ltvvaVHHnlEjRo10qRJk5ScnHxJ271US5Ys0T/+8Y9zFott27Zp2rRpFZoHACo7D6sDAADO74YbblBsbKwkafjw4QoLC9N//vMfLVy4UH379r3gc9u1a6dp06bp6aefVs2aNS/6Wi1bttS2bds0YcIEvfXWWyXOOmPGDO3fv1+LFy9W165di/wsLS1NXl5eJd5mefH29rY6AgBUOpyxAAA3cvXVV0uS9uzZc9HH/v3vf1d+fn6xz1rUq1dPAwcOvOSzFrt27ZLdblfnzp3P+llQUJB8fHyK3PfRRx8pJiZGvr6+ql69uvr373/OoVt/tnfvXhmGodmzZ5/1M8MwNG7cOEnmtRmPP/64JKl+/fqFQ8r27t1b+F7/eo3F7t271adPH4WGhsrPz0+dO3fW119/XeQxp4eFffjhh3rppZdUu3Zt+fj46JprrtHOnTsvmB0AKjuKBQC4kV27dkmSwsLCLvrY+vXrl7goPPPMM8rLyyvxECpJqlu3rvLz8zV37tyLPnb27Nm68847ZbfbNX78eI0YMUKffvqpLrvssjK5JqJ3796FZ3Ref/11zZ07V3PnzlV4ePg5H5+YmKiuXbvq+++/1+jRo/XSSy8pKytLf/vb3/TZZ5+d9fgJEybos88+02OPPaann35ay5YtU79+/UqdGwDcGUOhAMCFpaamKjk5WVlZWVq8eLFefPFF+fr66uabby7W85955hnNmTNHL7/8st58882LPr5BgwYaMGBA4RCqGjVqFDvr0KFD9frrr2vw4MGaMGGCunfvriuuuEI33nijgoODCx+Xm5urJ598Uq1atdKvv/5aeCbjsssu080336zXX39d//jHP4r9uufSpk0bdejQQfPnz9ett96qevXqXfDxEyZMUGJion777TdddtllkqQRI0aoTZs2euSRR9SrVy/ZbGeOxWVlZWndunWFw7uqVaumBx98UBs3bjzrwngAqCo4YwEALqxHjx4KDw9XdHS07r77bgUEBOizzz5TrVq1ivX800Vh6tSpOnLkSLGe8+yzz17SWYvIyEitX79eo0aN0okTJzR58mTdc889ioiI0D//+U85nU5J0qpVq5SUlKTRo0cXGR510003qVmzZmcNP6oI33zzjeLi4gpLhSQFBATo3nvv1d69e7V58+Yijx8yZEiRa0Yuv/xySeZwKgCoqigWAODC3n33Xf3www/6+eeftXnzZu3evVs9e/Ys0TZKWhQupYycVqNGDU2aNElHjhzRtm3b9NZbbyk8PFzPP/+8ZsyYIUnat2+fJKlp06ZnPb9Zs2aFP69I+/btO2ee5s2bF/78z+rUqVPk+2rVqkmSTpw4UU4JAcD1USwAwIXFxcWpR48e6t69u5o3b15kOE5xNWjQQP379y9RUTh9rcXLL79c4teTzAupmzRporFjx+rXX3+VzWbTvHnzLmlbf93uueTn55d62yVht9vPef/pszIAUBVRLACgCjh91qK4RaFhw4bq37+/pkyZUuKzFn/VoEEDVatWrXA7devWlWSuJfFX27ZtK/z5uZw+M/DXC7zPdZajJCt2161b95x5tm7dWiQzAOD8KBYAUAX8uSgkJCQU6znPPvuscnNz9corrxTr8cuXL1dGRsZZ969YsULHjh0rHGoUGxuriIgITZ48WdnZ2YWP+/bbb7VlyxbddNNN532NoKAgVa9eXb/++muR+ydOnHjWY/39/SWdXULO5cYbb9SKFSu0dOnSwvsyMjI0depU1atXTy1atLjoNgCgqmNWKACoIp555hnNnTtX27ZtU8uWLS/6+NNlJD4+vljbnzt3rubNm6fbbrtNMTEx8vLy0pYtWzRz5kz5+Pjo73//uyTJ09NTL7/8soYMGaIrr7xSffv2VWJiot58803Vq1dPDz/88AVfZ/jw4ZowYYKGDx+u2NhY/frrr9q+fftZj4uJiSl833fffbc8PT11yy23FBaOP3vqqac0f/583XDDDXrggQcUGhqq+Ph47dmzR5988sklDUEDgKqGYgEAVUSjRo1KVBQk86zFe++9V6xrGEaOHCk/Pz/99NNPWrhwodLS0hQeHq7rrrtOTz/9tNq3b1/42MGDB8vPz08TJkzQk08+KX9/f9122216+eWXFRIScsHXef7553X06FF9/PHH+vDDD3XDDTfo22+/VURERJHHdezYUf/85z81efJkfffdd3I4HNqzZ885i0VkZKSWLFmiJ598Um+//baysrLUpk0bffnllxc8gwIAOMNwcqUZAAAAgFLi3C4AAACAUqNYAAAAACg1igUAAACAUqNYAAAAACg1igUAAACAUqNYAAAAACg1t1/HwuFw6PDhwwoMDJRhGFbHAQAAACoNp9OpkydPqmbNmhddLNTti8Xhw4cVHR1tdQwAAACg0jpw4IBq1659wce4fbEIDAyUZL7ZoKAgi9MAAAAAlUdaWpqio6ML97kvxO2LxenhT0FBQRQLAAAAoBwU55IDLt4GAAAAUGoUCwAAAAClRrEAAAAAUGpuf40FAACoGvLz85Wbm2t1DKBS8fT0lN1uL5NtUSwAAIBLczqdSkhIUEpKitVRgEopJCREUVFRpV4TjmIBAABc2ulSERERIT8/PxbEBcqI0+lUZmamkpKSJEk1atQo1fYoFgAAwGXl5+cXloqwsDCr4wCVjq+vryQpKSlJERERpRoWxcXbAADAZZ2+psLPz8/iJEDldfrvV2mvYaJYAAAAl8fwJ6D8lNXfL4oFAAAAgFKjWAAAAFRh3bt310MPPWR1jHI3btw4tWvXrsJeb/bs2QoJCSn1dn755RcZhuEWs6JRLAAAAMrB4MGDZRiGJkyYUOT+zz//3K2Gds2ePVuGYej6668vcn9KSooMw9Avv/xS7G0NHjxYt956a9kGrETOVfK6du2qI0eOKDg42JpQJUCxAAAAKCc+Pj56+eWXdeLEiQp/7bJcTNDDw0M//vijfv755zLbZkVxOp3Ky8uzOsYl8/LyKpM1JioCxQIAAKCc9OjRQ1FRURo/fvwFH/f777/r8ssvl6+vr6Kjo/XAAw8oIyOj8OeGYejzzz8v8pyQkBDNnj1bkrR3714ZhqEFCxboyiuvlI+Pj+bNm6djx46pb9++qlWrlvz8/NS6dWvNnz+/xO/D399fQ4cO1VNPPXXBxx04cEB33nmnQkJCFBoaql69emnv3r2SzKFI8fHxWrhwoQzDKDzbcccdd+j+++8v3MZDDz0kwzC0detWSVJOTo78/f31448/SpKys7P1wAMPKCIiQj4+Prrsssu0cuXKwuefHjr07bffKiYmRt7e3vr999/Pyrpr1y41aNBA999/v5xO51k/dzqdGjdunOrUqSNvb2/VrFlTDzzwQOHPT5w4oYEDB6patWry8/PTDTfcoB07dpz3sznX2ZqHHnpI3bt3L/z5okWL9OabbxZ+Pnv37j3nUKhPPvlELVu2lLe3t+rVq6fXXnutyHbr1aunf/3rXxo6dKgCAwNVp04dTZ069bzZygrFAgAAuBWn06nMnDxLbufaAb0Qu92uf/3rX3r77bd18ODBcz5m165duv7663X77bdrw4YNWrBggX7//fciO9vF9dRTT+nBBx/Uli1b1LNnT2VlZSkmJkZff/21Nm7cqHvvvVcDBgzQihUrSrztcePG6Y8//tDHH398zp/n5uaqZ8+eCgwM1G+//abFixcrICBA119/vXJycvTYY4/pzjvv1PXXX68jR47oyJEj6tq1q6688soiw6kWLVqk6tWrF963cuVK5ebmqmvXrpKkJ554Qp988oni4+O1Zs0aNWrUSD179tTx48fP+iwmTJigLVu2qE2bNkV+tmHDBl122WW655579M4775zzbMAnn3yi119/XVOmTNGOHTv0+eefq3Xr1oU/Hzx4sFatWqUvvvhCS5culdPp1I033njJZ4refPNNdenSRSNGjCj8fKKjo8963OrVq3XnnXfq7rvv1h9//KFx48bpueeeKyyZp7322muKjY3V2rVrNXr0aN13333atm3bJWUrLhbIAwAAbuVUbr5aPP+9Ja+9+cWe8vMq2e7Tbbfdpnbt2umFF17QjBkzzvr5+PHj1a9fv8Kx9Y0bN9Zbb72lK6+8UpMmTZKPj0+xX+uhhx5S7969i9z32GOPFX49duxYff/99/rwww8VFxdXovdRs2ZNPfjgg3rmmWfOeZ3EggUL5HA4NH369MId9VmzZikkJES//PKLrrvuOvn6+io7O1tRUVGFz+vevbsefPBBHT16VB4eHtq8ebOee+45/fLLLxo1apR++eUXdezYUX5+fsrIyNCkSZM0e/Zs3XDDDZKkadOm6YcfftCMGTP0+OOPF273xRdf1LXXXntWziVLlujmm2/WM888o0cfffS873f//v2KiopSjx495OnpqTp16hR+Zjt27NAXX3yhxYsXFxaeefPmKTo6Wp9//rn69OlTos9WkoKDg+Xl5SU/P78in89f/ec//9E111yj5557TpLUpEkTbd68Wa+++qoGDx5c+Lgbb7xRo0ePliQ9+eSTev311/Xzzz+radOmJc5WXJyxAAAAKGcvv/yy4uPjtWXLlrN+tn79es2ePVsBAQGFt549e8rhcGjPnj0lep3Y2Ngi3+fn5+uf//ynWrdurdDQUAUEBOj777/X/v37L+l9PPnkkzp69Khmzpx5zvexc+dOBQYGFr6P0NBQZWVladeuXefdZqtWrRQaGqpFixbpt99+U/v27XXzzTdr0aJFkswzGKeHC+3atUu5ubnq1q1b4fM9PT0VFxd31mf7189CMsvCtddeq+eff/6CpUKS+vTpo1OnTqlBgwYaMWKEPvvss8JrNbZs2SIPDw916tSp8PFhYWFq2rTpOX+Py9KWLVuKvH9J6tatm3bs2KH8/PzC+/58lsYwDEVFRSkpKalcs3HGAgAAuBVfT7s2v9jTste+FFdccYV69uypp59+ushRZUlKT0/XyJEji4zfP61OnTqSzB3Dvw7DOteQG39//yLfv/rqq3rzzTf1xhtvqHXr1vL399dDDz2knJycS3ofISEhevrpp/WPf/xDN99881nvIyYmRvPmzTvreeHh4efdpmEYuuKKK/TLL7/I29tb3bt3V5s2bZSdna2NGzdqyZIlRc66FNdfP4vTOWrWrKn58+dr6NChCgoKOu/zo6OjtW3bNv3444/64YcfNHr0aL366quFhaekbDZbsX4Py4qnp2eR7w3DkMPhKLfXkygWAADAzRiGUeLhSK5gwoQJateu3VlDUTp06KDNmzerUaNG531ueHi4jhw5Uvj9jh07lJmZedHXXLx4sXr16qX+/ftLkhwOh7Zv364WLVpc4rswh1O99dZbevPNN4vc36FDBy1YsEARERHn3WH38vIqclT9tCuvvFLTpk2Tt7e3XnrpJdlsNl1xxRV69dVXlZ2dXXiEvmHDhvLy8tLixYtVt25dSebO+cqVK4u1Foevr6+++uor3XjjjerZs6f++9//KjAw8IKPv+WWW3TLLbdozJgxatasmf744w81b95ceXl5Wr58eeFQqGPHjmnbtm3n/WzDw8O1cePGIvetW7euSAE43+fzZ82bN9fixYuL3Ld48WI1adJEdvulFd+ywlAoAACACtC6dWv169dPb731VpH7n3zySS1ZskT333+/1q1bpx07dmjhwoVFLt6++uqr9c4772jt2rVatWqVRo0addYR6XNp3LixfvjhBy1ZskRbtmzRyJEjlZiYWKr34ePjo3/84x9nvY9+/fqpevXq6tWrl3777Tft2bNHv/zyix544IHCC9fr1aunDRs2aNu2bUpOTi48Yt+9e3dt3rxZmzZt0mWXXVZ437x58xQbG1t49sHf31/33XefHn/8cX333XfavHmzRowYoczMTA0bNqxY+f39/fX111/Lw8NDN9xwg9LT08/5uNmzZ2vGjBnauHGjdu/erffee0++vr6qW7euGjdurF69emnEiBH6/ffftX79evXv31+1atVSr169zrm9q6++WqtWrdKcOXO0Y8cOvfDCC2cVjXr16mn58uXau3evkpOTz3mG4dFHH9VPP/2kf/7zn9q+fbvi4+P1zjvvXNJZnbJGsQAAAKggL7744lk7i23atNGiRYu0fft2XX755Wrfvr2ef/551axZs/Axr732mqKjo3X55Zfrnnvu0WOPPSY/P7+Lvt6zzz6rDh06qGfPnurevbuioqLKZIG6QYMGqUGDBkXu8/Pz06+//qo6deqod+/eat68uYYNG6asrKzCMxgjRoxQ06ZNFRsbq/Dw8MIj761bt1ZISIjatWungIAASWaxyM/PL7y+4rQJEybo9ttv14ABA9ShQwft3LlT33//vapVq1bs/AEBAfr222/ldDp10003FZna97SQkBBNmzZN3bp1U5s2bfTjjz/qyy+/VFhYmCTzwvSYmBjdfPPN6tKli5xOp7755pvzFr6ePXvqueee0xNPPKGOHTvq5MmTGjhwYJHHPPbYY7Lb7WrRooXCw8PPeS1Mhw4d9OGHH+qDDz5Qq1at9Pzzz+vFF188a4idFQxnSedNczFpaWkKDg5WamrqBcfJAQAA95OVlaU9e/aofv36JZodCUDxXejvWUn2tTljAQAAAKDUKBYAAAAASo1iAQAAAKDUKBYAAAAASo1iAQAAAKDUKBYAAAAASo1iAQAAAKDUKBZlYGdSunYfPfeqjQAAAEBVQLEopZTMHA2PX6le7y7Wou1HrY4DAAAAWIJiUUp5DqfCArx1MitPQ2at0PTfdsvNFzMHAACQJP3yyy8yDEMpKSml2s7evXtlGIbWrVtXJrngmigWpVQ9wFvvj+ikO2Nry+GU/u/rLXr84w3Kzsu3OhoAALCIYRgXvI0bN87qiOVm8ODBuvXWW4vcFx0drSNHjqhVq1bWhEKF8LA6QGXg7WHXy7e3UfMaQfrnV5v18eqD2n00XZMHxCgi0MfqeAAAoIIdOXKk8OsFCxbo+eef17Zt2wrvCwgIKPza6XQqPz9fHh6Vd7fMbrcrKirK6hgoZ5yxKCOGYWhIt/qKHxqnIB8Prdmfol7vLNbWhDSrowEAgAoWFRVVeAsODpZhGIXfb926VYGBgfr2228VExMjb29v/f777+c80v/QQw+pe/fuhd87HA6NHz9e9evXl6+vr9q2bauPP/74glkmTpyoxo0by8fHR5GRkbrjjjsKf5adna0HHnhAERER8vHx0WWXXaaVK1eed1vjxo1Tu3btitz3xhtvqF69eoU/j4+P18KFCwvPzvzyyy/nHAq1aNEixcXFydvbWzVq1NBTTz2lvLy8wp93795dDzzwgJ544gmFhoYqKiqqUp/pqQwqbzW2yOWNw7Xw/ss0PH6ldh3N0F1TlmnWkI7qUKea1dEAAKgcnE4pN9Oa1/b0kwyjTDb11FNP6d///rcaNGigatWKt58wfvx4vffee5o8ebIaN26sX3/9Vf3791d4eLiuvPLKsx6/atUqPfDAA5o7d666du2q48eP67fffiv8+RNPPKFPPvlE8fHxqlu3rl555RX17NlTO3fuVGhoaInf02OPPaYtW7YoLS1Ns2bNkiSFhobq8OHDRR536NAh3XjjjRo8eLDmzJmjrVu3asSIEfLx8SlSHuLj4/XII49o+fLlWrp0qQYPHqxu3brp2muvLXE2lD+KRTmoX91fn97XTUNmr9Ca/SnqP325pg6I1WWNq1sdDQAA95ebKf2rpjWv/ffDkpd/mWzqxRdfLNEOcnZ2tv71r3/pxx9/VJcuXSRJDRo00O+//64pU6acs1js379f/v7+uvnmmxUYGKi6deuqffv2kqSMjAxNmjRJs2fP1g033CBJmjZtmn744QfNmDFDjz/+eInfU0BAgHx9fZWdnX3BoU8TJ05UdHS03nnnHRmGoWbNmunw4cN68skn9fzzz8tmMwfVtGnTRi+88IIkqXHjxnrnnXf0008/USxcFEOhykmwn6feG95JlzeursycfA2LX6mlu45ZHQsAALiI2NjYEj1+586dyszM1LXXXquAgIDC25w5c7Rr165zPufaa69V3bp11aBBAw0YMEDz5s1TZqZ5tmfXrl3Kzc1Vt27dCh/v6empuLg4bdmy5dLfWDFs2bJFXbp0kfGnsz/dunVTenq6Dh48WHhfmzZtijyvRo0aSkpKKtdsuHScsShHfl4emj4oVmPmrdWPWxI1PH6l3hveSe0ZFgUAwKXz9DPPHFj12mXE37/omQ+bzXbWlPW5ubmFX6enm4vxfv3116pVq1aRx3l7e5/zNQIDA7VmzRr98ssv+u9//6vnn39e48aNu+B1FBdysYxlzdPTs8j3hmHI4XCU2+uhdDhjUc68Pex655726tYoTBk5+Ro0c4U2H+aCbgAALplhmMORrLiV0fUV5xIeHl5kNilJRS52btGihby9vbV//341atSoyC06Ovq82/Xw8FCPHj30yiuvaMOGDdq7d6/+97//qWHDhvLy8tLixYsLH5ubm6uVK1eqRYsW582YkJBQpFz8dW0KLy8v5edfeNr95s2ba+nSpUW2s3jxYgUGBqp27doXfC5cF8WiAvh42jVtYKxi6lZTWlaeBsxYrp1J6VbHAgAALuTqq6/WqlWrNGfOHO3YsUMvvPCCNm7cWPjzwMBAPfbYY3r44YcVHx+vXbt2ac2aNXr77bcVHx9/zm1+9dVXeuutt7Ru3Trt27dPc+bMkcPhUNOmTeXv76/77rtPjz/+uL777jtt3rxZI0aMUGZmpoYNG3bO7XXv3l1Hjx7VK6+8ol27dundd9/Vt99+W+Qx9erV04YNG7Rt2zYlJyef84zG6NGjdeDAAY0dO1Zbt27VwoUL9cILL+iRRx4pvL4C7offuQri5+WhmYM7qmXNIB3LyFH/6ct14LhFM1oAAACX07NnTz333HN64okn1LFjR508eVIDBw4s8ph//vOfeu655zR+/Hg1b95c119/vb7++mvVr1//nNsMCQnRp59+qquvvlrNmzfX5MmTNX/+fLVs2VKSNGHCBN1+++0aMGCAOnTooJ07d+r7778/7yxVzZs318SJE/Xuu++qbdu2WrFihR577LEijxkxYoSaNm2q2NhYhYeHFzkjclqtWrX0zTffaMWKFWrbtq1GjRqlYcOG6dlnn72Ujw4uwnD+daCcm0lLS1NwcLBSU1MVFBRkdZyLOpaerbumLtPOpHTVCfXTR6O6KDKIRfQAADiXrKws7dmzR/Xr15ePD/9fAuXhQn/PSrKvzRmLChYW4K15wzupTqif9h/P1IAZy3UiI8fqWAAAAECpUCwsEBnko3nDOykqyEfbE9M1aNYKncwqvxkVAAAAgPJGsbBIdKif3hsep1B/L204mKph8auUlXvhGRQAAAAAV0WxsFCjiEDNGRqnQG8PrdhzXPe9t1o5eczNDAAAAPdDsbBYq1rBmjmko3w8bfp521E9/OE65Tvc+np6AADKnJvPNQO4tLL6+0WxcAEd64Vqcv8YedoNfb3hiB5asE65+Zy5AADg9MrLmZlM0Q6Ul9N/v/660nlJeZRFGJRe96YRertvB42dv0Zfrj+sUzn5euee9vLxtFsdDQAAy9jtdoWEhCgpKUmS5OfnJ6McV78GqhKn06nMzEwlJSUpJCREdnvp9jtZx8LF/Lw1SSMLrrXo1ihMk/rHKMindO0RAAB35nQ6lZCQoJSUFKujAJVSSEiIoqKizlnaS7KvTbFwQUt2JWt4/Cpl5uSraWSgZg7pqFohvlbHAgDAUvn5+crNZXp2oCx5enpe8EwFxaIS2HgoVUNnr1TSyWyFB3pr+sBYtY0OsToWAAAAqhBW3q4EWtUK1udjuqlZVKCOnsxWnylL9cnqg1bHAgAAAM6JYuHCaob46qNRXdSjeaRy8hx69KP1evHLzcpjxigAAAC4GIqFiwv08dTUATF64JrGkqSZi/do4MwVOpGRY3EyAAAA4AyKhRuw2Qw9cm0TTe7fQX5edi3ZdUy3vPO7thxJszoaAAAAIIli4Vaub1VDn43upjqhfjp44pR6T1yirzccsToWAAAAQLFwN02jAvXF/d10eePqOpWbrzHvr9Er321VvsOtJ/cCAACAm6NYuKEQPy/NGtxR917RQJI08ZddevCDtcrJ46JuAAAAWINi4aY87Db9/cbmev2utvK0G/pqwxENi1+pjOw8q6MBAACgCqJYuLnb2tfWjEEd5edl1287ktVv+nKlnmJVUgAAAFQsikUlcEWTcL0/orOq+Xlq3YEUDZq5QiezKBcAAACoOBSLSqJddIjmDe+skD+Vi3SGRQEAAKCCUCwqkRY1g/TesE4K9vXUmv0pGjZ7pbJy862OBQAAgCqAYlHJtKoVrPeGdVKgt4eW7zmu+99fo9x8ZosCAABA+aJYVEKtawdr2qBYeXvY9OOWJD358QY5WOcCAAAA5YhiUUl1bhCmif06yG4z9OnaQ3rxq81yOikXAAAAKB8Ui0rsmuaReq1PW0nS7CV79dZPOy1OBAAAgMqKYlHJ3dq+lv7xt5aSpNd/3K7Zi/dYnAgAAACVEcWiChjUtZ4e7tFEkjTuy836bO1BixMBAACgsqFYVBEPXNNIQ7rVkyQ99tEG/bg50dpAAAAAqFQoFlWEYRh67qYW6t2hlvIdTo15f40W70y2OhYAAAAqCYpFFWKzGXrl9ja6tkWksvMcGjp7pRZtP2p1LAAAAFQCFIsqxsNu0zv3tFeP5hHKznNoRPwq/bSFYVEAAAAoHYpFFeTtYdfEfjG6vmWUcvIdGjl3tT5ezQXdAAAAuHQUiyrKy8Omt+9pr1vb1VSew6nHPlqvd/63g0X0AAAAcEkoFlWYp92m/9zZTqOubChJ+vd/t+uJjzcoOy/f4mQAAABwNxSLKs5mM/TUDc30Yq+WshnSR6sPqu/UZUpKy7I6GgAAANwIxQKSpIFd6mnWkDgF+Xhozf4U3fLO71p3IMXqWAAAAHATFAsUurJJuL64/zI1jghQYlq27pyyVJ9wUTcAAACKgWKBIupV99dnY7rp2haRyslz6NGP1uvFLzcrL99hdTQAAAC4MIoFzhLg7aEp/WP0wDWNJUkzF+/RoFkrdCIjx+JkAAAAcFUUC5yTzWbokWubaFK/DvLzsmvxzmPq9e5i7Uw6aXU0AAAAuCCKBS7ohtY19OnorooO9dX+45m6Y/JSrdl/wupYAAAAcDEUC1xUs6ggLRxzmdpFhyglM1f3TFumn7cmWR0LAAAALoRigWIJ9ffS+yM6qXvTcGXlOjRizip9vynB6lgAAABwERQLFJufl4emDYzV39rWVJ7DqTHz1lAuAAAAIIligRLytNv0nzvbqle7M+Xiv5QLAACAKo9igRLzsNv0Wp8z5eL+99dq8c5kq2MBAADAQhQLXJLT5eL6llHKyTevuWC2KAAAgKqLYoFL5mG36c2+7XR54+rKzMnX4JkrtOVImtWxAAAAYAGKBUrF28OuKQNiFFO3mtKy8jRgxgrtTc6wOhYAAAAqGMUCpebn5aGZgzuqRY0gJadnq9/05TqSesrqWAAAAKhAFAuUiWBfT80ZFqcG1f11KOWU+k9frmPp2VbHAgAAQAWhWKDMVA/w1tzhnVQz2Ee7jmZo0KwVSsvKtToWAAAAKgDFAmWqVoiv3hveSWH+Xtp4KE3DZq/UqZx8q2MBAACgnFEsUOYahAdozrA4Bfp4aOXeExr13mrl5DmsjgUAAIByRLFAuWhZM1izBneUr6ddi7Yf1cML1inf4bQ6FgAAAMoJxQLlJrZeqKYMiJGn3dDXfxzR059ukINyAQAAUClRLFCurmgSrrfubi+bIX246qAeXLCOYVEAAACVUIUViwkTJsgwDD300EOF92VlZWnMmDEKCwtTQECAbr/9diUmJlZUJFSQG1rX0Jt3t5en3dCX6w9rWPxKpWfnWR0LAAAAZahCisXKlSs1ZcoUtWnTpsj9Dz/8sL788kt99NFHWrRokQ4fPqzevXtXRCRUsFva1tTMwR3l52XXbzuSddeUpSyiBwAAUImUe7FIT09Xv379NG3aNFWrVq3w/tTUVM2YMUP/+c9/dPXVVysmJkazZs3SkiVLtGzZsvKOBQtc3jhc80d0VvUAL206nKZe7yzW+gMpVscCAABAGSj3YjFmzBjddNNN6tGjR5H7V69erdzc3CL3N2vWTHXq1NHSpUvPu73s7GylpaUVucF9tI0O0Weju6lpZKCSTmbrzilL9fWGI1bHAgAAQCmVa7H44IMPtGbNGo0fP/6snyUkJMjLy0shISFF7o+MjFRCQsJ5tzl+/HgFBwcX3qKjo8s6NspZdKifPr6vi65qGq7sPIfGvL9Gb/+0Q04nM0YBAAC4q3IrFgcOHNCDDz6oefPmycfHp8y2+/TTTys1NbXwduDAgTLbNipOoI+npg/qqKHd6kuSXvthux5esE5ZuazSDQAA4I7KrVisXr1aSUlJ6tChgzw8POTh4aFFixbprbfekoeHhyIjI5WTk6OUlJQiz0tMTFRUVNR5t+vt7a2goKAiN7gnu83Q87e00Eu3tZLdZujzdYd1z7RlSk7PtjoaAAAASqjcisU111yjP/74Q+vWrSu8xcbGql+/foVfe3p66qeffip8zrZt27R//3516dKlvGLBBfXrVFdzhsYpyMdDa/anqNc7i7Ut4aTVsQAAAFACHuW14cDAQLVq1arIff7+/goLCyu8f9iwYXrkkUcUGhqqoKAgjR07Vl26dFHnzp3LKxZcVLdG1fXZmG4aNnul9h7L1O2Tlujtvu11VbMIq6MBAACgGCxdefv111/XzTffrNtvv11XXHGFoqKi9Omnn1oZCRZqGB6gz0Z3U+cGoUrPztOw+JWa8fseq2MBAACgGAynm0/Fk5aWpuDgYKWmpnK9RSWRk+fQc59v1IJV5oX5D/doogd7NLY4FQAAQNVTkn1tS89YAOfi5WHThNtb6/GeTSVJr/+4XW/8uN3iVAAAALgQigVckmEYGnNVIz11QzNJ0hs/7tDbP+2wOBUAAADOh2IBlzbqyoZ6uqBcvPbDdr23bJ/FiQAAAHAuFAu4vJFXNtQD15jXWDy3cKO++eOIxYkAAADwVxQLuIWHezTWPZ3qyOmUHvpgnRbvTLY6EgAAAP6EYgG3YBiG/tmrlW5oFaWcfIfunbNKfxxMtToWAAAAClAs4DbsNkNv3N1OXRqEKSMnX4NnrdCe5AyrYwEAAEAUC7gZbw+7pg6MUcuaQTqWkaMBM5YrKS3L6lgAAABVHsUCbifQx1Ozh8SpXpifDp44pYEzVyj1VK7VsQAAAKo0igXcUnigt+YM7aTwQG9tTTipEXNWKSs33+pYAAAAVRbFAm6rTpif4ofEKdDbQyv2HNf9769RTp7D6lgAAABVEsUCbq1FzSBNGxQrbw+bftySpIcWrFVePuUCAACgolEs4PY6NwjT1IGx8rLb9M0fCXrso/XKdzitjgUAAFClUCxQKVzZJFzv9usgD5uhz9cd1tj5DIsCAACoSBQLVBrXtojUO/d0KDxzMWLOKp3K4YJuAACAikCxQKVyfasozRgcK19PuxZtP6p+05cpOT3b6lgAAACVHsUClc7ljcM1d1icgnw8tGZ/inq9s1hbE9KsjgUAAFCpUSxQKcXWC9VnY7qpfnV/HUo5pdsnLtH/tiZaHQsAAKDSolig0moYHqDPRndVlwZhysjJ1/D4VZr+2245ncwYBQAAUNYoFqjUQvy8FD80Tnd3jJbDKf3f11v09882Kpe1LgAAAMoUxQKVnpeHTeN7t9azNzWXYUjzV+zXgBnLdSIjx+poAAAAlQbFAlWCYRgafnkDzRgUqwBvDy3bfVy3TlysnUnpVkcDAACoFCgWqFKubhapT0d3VXSor/Ydy9Qdk5do9b4TVscCAABwexQLVDlNIgP1+ehuahcdopTMXPWbvkw/bGbGKAAAgNKgWKBKCgvw1vsjOumaZhHKynVo5NxVWrjukNWxAAAA3BbFAlWWn5eHpgyIUZ+Y2nI4pYcXrNNnaw9aHQsAAMAtUSxQpXnYbXr59jbqG2dOR/vIh+v16RrKBQAAQElRLFDl2WyGXrq1tfp1qiOnU3r84w36kWsuAAAASoRiAcgsF/93ayvdEVNb+Q6nxry/Rqv3Hbc6FgAAgNugWAAFDMPQ+N6tdXWzCGXnOTR09iptTzxpdSwAAAC3QLEA/sTTbtO793RQ+zohSj2Vq0EzV+hwyimrYwEAALg8igXwF75eds0c1FGNIgJ0JDVLA2eu0ImMHKtjAQAAuDSKBXAO1fy9NGdonGoE+2hnUrqGxq9UZk6e1bEAAABcFsUCOI+aIb6aMzROwb6eWrs/RaPnrVFuvsPqWAAAAC6JYgFcQOPIQM0c3FE+njb9su2onvh4gxwOp9WxAAAAXA7FAriImLrVNKl/jDxshj5be0j/9/UWOZ2UCwAAgD+jWADFcFXTCL3ap40kaebiPZq0aJfFiQAAAFwLxQIoptva19azNzWXJL3y3TZ9sGK/xYkAAABcB8UCKIHhlzfQfd0bSpL+/tkf+nztIYsTAQAAuAaKBVBCT/Rsqr5x0XI4pYc/XKePVx+0OhIAAIDlKBZACRmGoZduba17OtWR0yk9/vF6zVu+z+pYAAAAlqJYAJfAZjP00q2tNKhLXTmd0jOfbdSr329lKloAAFBlUSyAS2QYhsb9raXGXt1IkvTuz7v04IJ1ysrNtzgZAABAxaNYAKVgGIYeva6pXrmjjTxshr5cf1gDZizXiYwcq6MBAABUKIoFUAbujI1W/NA4BXp7aOXeE+o9aYn2JmdYHQsAAKDCUCyAMtKtUXV9MrqraoX4ak9yhnpPWqLV+45bHQsAAKBCUCyAMtQkMlCfjemqNrWDdTwjR32nLdc3fxyxOhYAAEC5o1gAZSwi0Ecf3NtZPZpHKCfPodHz1mjqr7vkdDJjFAAAqLwoFkA58PPy0JQBsRrUpa4k6V/fbNVzCzcqL99hcTIAAIDyQbEAyondZk5H+9zNLWQY0nvL9uveuat1KofpaAEAQOVDsQDKkWEYGnZZfU3q10HeHjb9b2uShsxeocycPKujAQAAlCmKBVABrm9VQ/OGd1KAt4eW7T6uwbNWKiObcgEAACoPigVQQWLrhWrOMHOtixV7jmvI7JWs0g0AACoNigVQgTrUqab3hncqLBcPfrBW+Q5miwIAAO6PYgFUsLbRIZo2KFZeHjZ9vylRzy3cyFS0AADA7VEsAAt0bhCmN+9qJ8OQ3l++X2/+tMPqSAAAAKVCsQAsckPrGnqxVytJ0hs/7tC85fssTgQAAHDpKBaAhQZ0rquxVzeSJD33+UZ9vynB4kQAAACXhmIBWOyRa5vo7o7RcjilsfPXauXe41ZHAgAAKDGKBWAxwzD0f7e2Uo/mkcrJc2h4/CrtTDppdSwAAIASoVgALsDDbtPbfdurfZ0QpZ7K1aCZK5WYlmV1LAAAgGKjWAAuwtfLrhmDOqpBdX8dSjmlQTNXKC0r1+pYAAAAxUKxAFxIqL+X4ofGqXqAt7YmnNSouauVk+ewOhYAAMBFUSwAFxMd6qfZQzrK38uuJbuO6bGP1svB6twAAMDFUSwAF9SqVrAm9Y+Rh83QF+sP69mFGykXAADApVEsABd1RZNwvXZn28LVuZ//YqOcTsoFAABwTRQLwIX1aldL/77DLBfvLduv5xdu4swFAABwSRQLwMXdHlNbL9/eRoYhzV22T49+tF65+VzQDQAAXAvFAnADd8ZG6/U728luM/TZ2kMaNXe1snLzrY4FAABQiGIBuIlb29fStIEx8vaw6aetSbpn2jIdS8+2OhYAAIAkigXgVq5uFqn3hndSsK+n1uxP0e2TlmhPcobVsQAAACgWgLvpWC9Un9zXVbWr+WrvsUz1nrhYq/cdtzoWAACo4igWgBtqFBGgz0Z3U5vawTqRmau+05brmz+OWB0LAABUYRQLwE2FB3rrg3s7q0fzCOXkOTTm/TWa/ttu1roAAACWoFgAbszPy0NTBsRqUJe6cjql//t6i8Z9sUn5rHUBAAAqGMUCcHN2m6Fxf2upZ29qLkmKX7pPI+eu1qkcpqMFAAAVh2IBVAKGYWj45Q00sV8HeXnY9OOWRA2LX6nMnDyrowEAgCqCYgFUIje2rqH3hnWSv5ddS3Yd05BZK5WRTbkAAADlj2IBVDJx9UM1Z1gnBXh7aPme4xoyayXDogAAQLmjWACVUEzdanpveCcF+nhoxd7jGvP+GuXmO6yOBQAAKjGKBVBJtYsO0czBHeXjadP/tibpsY/Wy8FsUQAAoJxQLIBKrGO9UE3qFyMPm6GF6w7r/77eYnUkAABQSVEsgEruqmYReu3OtpKkmYv3aNbiPRYnAgAAlRHFAqgCerWrpSevbyZJevGrzfrvpgSLEwEAgMqGYgFUEaOubKC+cXXkdEoPfLBW6w6kWB0JAABUIhQLoIowDEP/7NVS3ZuGKyvXoeHxK3XgeKbVsQAAQCVBsQCqEA+7Te/c00EtawYpOT1Hg2atUEpmjtWxAABAJUCxAKqYAG8PzRzcUTWDfbT7aIbunbta2XksoAcAAEqHYgFUQZFBPpo1JE6B3h5asee4Hv9oA2tcAACAUqFYAFVU06hATepvrnHxxfrD+vd/t1kdCQAAuDGKBVCFXda4usb3bi1JmvjLLs1mjQsAAHCJKBZAFdcnNloP9WgsSRr35WZ9uPKAxYkAAIA7olgA0IPXNNawy+pLkp78dIO+WH/Y4kQAAMDdUCwAyDAMPXtT88IF9B5esE6frz1kdSwAAOBGKBYAJJnl4qVbW6lPTG3lO5x6+MN1mr9iv9WxAACAm6BYAChksxl6+fY2GtC5rpxO6elP/9C0X3dbHQsAALgBigWAImw2Qy/2aql7r2ggSXrpmy168cvNrHMBAAAuiGIB4CyGYejpG5rp7zc2kyTNXLxHYz9Yq6xcVugGAADnRrEAcE6GYejeKxrqzbvbydNu6OsNRzRw5gqlZuZaHQ0AALggigWAC+rVrpbih8Qp0NtDK/Yc1x2Tl+hwyimrYwEAABdDsQBwUV0bVdeHo7ooMshbO5LSddvExdpyJM3qWAAAwIVQLAAUS/MaQfp0dDc1jghQYlq27py8VEt2JVsdCwAAuAiKBYBiqxXiq49HdVVc/VCdzM7ToJkr9N3GI1bHAgAALoBiAaBEgv08NWdonG5qXUO5+U6NeX+tvt5AuQAAoKqjWAAoMR9Pu97q216929dSvsOpBz5Yq4XrDlkdCwAAWIhiAeCS2G2GXu3TVn1iaivf4dQjH67XfzclWB0LAABYhGIB4JLZbYZevr2N7igoF/fPX6ulu45ZHQsAAFiAYgGgVGw2QxN6t9Z1LSKVk+fQiDmr9MfBVKtjAQCACkaxAFBqHnab3urbXl0ahCk9O09DZq/UgeOZVscCAAAViGIBoEz4eNo1dWCMmtcIUnJ6tobMXqnUzFyrYwEAgApCsQBQZgJ9PDVrcEfVCPbRzqR03Tt3lbLz8q2OBQAAKgDFAkCZigr20czBHRXg7aHle47riY83yOl0Wh0LAACUM4oFgDLXvEaQJvXvIA+boYXrDuvf/91mdSQAAFDOKBYAysXljcP1r96tJUnv/rxL81fstzgRAAAoTxQLAOXmzthoPXBNY0nSs59v1C/bkixOBAAAygvFAkC5erhHY/XuUEv5DqfGzFujTYdZ4wIAgMqIYgGgXBmGoQm926hrwzBl5ORr6OyVOpxyyupYAACgjFEsAJQ7Lw+bJvWPUZPIACWmZWvIrJVKy2KNCwAAKhOKBYAKEezrqVlD4hQR6K1tiSd133urlZPnsDoWAAAoIxQLABWmVoivZg7uKD8vuxbvPKanPt0gh4M1LgAAqAwoFgAqVKtawXr3ng6y2wx9uuaQ/v7ZH5QLAAAqgXItFuPHj1fHjh0VGBioiIgI3Xrrrdq2rehCWVlZWRozZozCwsIUEBCg22+/XYmJieUZC4DFrmoWodf6tJXNkD5YeUBPf0q5AADA3ZVrsVi0aJHGjBmjZcuW6YcfflBubq6uu+46ZWRkFD7m4Ycf1pdffqmPPvpIixYt0uHDh9W7d+/yjAXABdzavpZev6udbIa0YNUBPfbReuXmc80FAADuynA6nRV2mPDo0aOKiIjQokWLdMUVVyg1NVXh4eF6//33dccdd0iStm7dqubNm2vp0qXq3LnzRbeZlpam4OBgpaamKigoqLzfAoAy9sX6w3p4wTrlO5zq0TxC79zTQT6edqtjAQAAlWxfu0KvsUhNNRfGCg0NlSStXr1aubm56tGjR+FjmjVrpjp16mjp0qXn3EZ2drbS0tKK3AC4r7+1rakp/WPk7WHTj1uSNHDmCqaiBQDADVVYsXA4HHrooYfUrVs3tWrVSpKUkJAgLy8vhYSEFHlsZGSkEhISzrmd8ePHKzg4uPAWHR1d3tEBlLMeLSI1Z2icAr09tGLPcfWdukzJ6dlWxwIAACVQYcVizJgx2rhxoz744INSbefpp59Wampq4e3AgQNllBCAlTo1CNP8ezureoCXNh1OU5/JS3XgeKbVsQAAQDFVSLG4//779dVXX+nnn39W7dq1C++PiopSTk6OUlJSijw+MTFRUVFR59yWt7e3goKCitwAVA6tagXro1FdVSvEV3uSM9Rn8lLtSDxpdSwAAFAM5VosnE6n7r//fn322Wf63//+p/r16xf5eUxMjDw9PfXTTz8V3rdt2zbt379fXbp0Kc9oAFxU/er++uS+rmocEaCEtCz1mbJUa/efsDoWAAC4iHKdFWr06NF6//33tXDhQjVt2rTw/uDgYPn6+kqS7rvvPn3zzTeaPXu2goKCNHbsWEnSkiVLivUazAoFVE4nMnI0ZPZKrTuQIj8vu6YMiNHljcOtjgUAQJVSkn3tci0WhmGc8/5Zs2Zp8ODBkswF8h599FHNnz9f2dnZ6tmzpyZOnHjeoVB/RbEAKq+M7DyNem+1ftuRLE+7oTfvbq8bW9ewOhYAAFWGyxSLikCxACq37Lx8PbJgvb7+44gMQ/rXba3VN66O1bEAAKgSXHYdCwAoKW8Pu97q21594+rI6ZSe/vQPfbz6oNWxAADAX1AsALg8u83Qv25rpaHdzAkgnvxkg77fdO61bgAAgDUoFgDcgmEYeu7m5uoTU1v5DqfGvr9WS3YlWx0LAAAUoFgAcBuGYWh879a6rkWkcvIdGjV3tXYmpVsdCwAAiGIBwM142G16q297xdStprSsPA2LX6njGTlWxwIAoMqjWABwOz6e5roWtav5at+xTI2au1rZeflWxwIAoEqjWABwS9UDvDVrcEcFentoxd7jevrTP+Tms2cDAODWKBYA3FbjyEC926+D7DZDn645pIm/7LI6EgAAVRbFAoBbu6JJuMb9raUk6dXvt+nrDUcsTgQAQNVEsQDg9gZ0rqsh3epJkh75cJ3WH0ixNA8AAFURxQJApfDsTS10dbMIZec5NHzOKh1OOWV1JAAAqhSKBYBKwW4z9Fbf9moWFaijJ7M1LH6VMrLzrI4FAECVQbEAUGkEeHto+qBYVQ/w0pYjaRrz/hrl5jusjgUAQJVAsQBQqdSu5qdpA2Pl42nTL9uOMg0tAAAVhGIBoNJpX6ea3unbQTZD+nj1Qb323+1WRwIAoNKjWAColHq0iNS/bmstSXrn552asog1LgAAKE8UCwCV1t1xdfR4z6aSpPHfbtXM3/dYnAgAgMqLYgGgUhtzVSM9cHUjSdKLX21W/JK91gYCAKCSolgAqPQevraJRl3ZUJL0wheb9NZPO7igGwCAMkaxAFDpGYahJ69vqgevaSxJ+s8P2/XiV5vlcFAuAAAoKxQLAFWCYRh6+NomeuGWFpKkWYv36rGP1rPOBQAAZYRiAaBKGdKtvl6/q63sNkOfrj2k+95brazcfKtjAQDg9igWAKqc29rX1tQBMfL2sOnHLUkaOHOF0rJyrY4FAIBbo1gAqJKuaR6pucM6KdDbQyv2HNddU5Yp6WSW1bEAAHBbFAsAVVZc/VB9MLKzqgd4a8uRNN0xaan2H8u0OhYAAG6JYgGgSmtZM1if3NdFdUL9tP94pu6aulR7kjOsjgUAgNuhWACo8uqG+evjUV3UKCJAR1KzdNeUpdqZlG51LAAA3ArFAgAkRQT56IN7O6tpZKCSTmbr7qnLOHMBAEAJUCwAoED1AG/Nv7ezmkUFKjk9W/2nL9eR1FNWxwIAwC1QLADgT0L9vTR3WCfVr+6vQymn1H/6ch3PyLE6FgAALo9iAQB/ER7orfeGd1KNYB/tOpqhobNXsogeAAAXQbEAgHOoFeKrucM6KdjXU+sOpOixj9bL6XRaHQsAAJdFsQCA82gUEaDJ/WPkYTP01YYjeuPHHVZHAgDAZVEsAOACujQM00u3tZIkvfnTDi1cd8jiRAAAuCaKBQBcxF0d6+jeKxpIkh7/eIPW7D9hcSIAAFwPxQIAiuHJ65upR/NI5eQ5dO+cVTp4ItPqSAAAuBSKBQAUg91m6M2726l5jSAlp+do2OxVOpmVa3UsAABcBsUCAIrJ39tDMwbFKjzQW9sST2rs/LXKy3dYHQsAAJdAsQCAEqgZ4qvpA2Pl42nTL9uO6v++3mJ1JAAAXALFAgBKqG10iF6/s50kafaSvZqzdK+leQAAcAUUCwC4BDe0rqEnrm8qSRr3xSb9si3J4kQAAFiLYgEAl+i+KxuqT0xtOZzS/e+v1baEk1ZHAgDAMhQLALhEhmHopdtaq3ODUKVn52no7JVKSM2yOhYAAJagWABAKXh52DS5f4waVPfXoZRT6j9juY5n5FgdCwCACkexAIBSCvHz0pxhcaoR7KOdSekaOHO50ljjAgBQxVAsAKAM1K7mp/eGd1KYv5c2HkrToJkrlJpJuQAAVB0UCwAoIw3DAzRnWJyCfT21dn+K7p62TMnp2VbHAgCgQlAsAKAMtawZrAUjO6t6gLe2HEnTnVOW6kjqKatjAQBQ7igWAFDGmkUF6cORnVUz2Ee7j2aoz+Sl2ncsw+pYAACUK4oFAJSDBuEB+ui+rqoX5qeDJ06pz+Sl2pHIOhcAgMqLYgEA5aRWiK8+HNVFTSMDlXQyW3dOWao/DqZaHQsAgHJBsQCAchQR6KMFIzurbe1gncjM1T3TlmnV3uNWxwIAoMxRLACgnIX4eem94Z0UVz9UJ7PzNGDGCv2+I9nqWAAAlCmKBQBUgEAfT8UPidOVTcJ1KjdfQ2ev1H83JVgdCwCAMkOxAIAK4utl19SBMbq+ZZRy8h26b94aLVx3yOpYAACUCYoFAFQgbw+73rmnvXq3r6V8h1MPLVinL9YftjoWAAClRrEAgArmYbfp333aqm9ctJxO6ZEF6/Tz1iSrYwEAUCoUCwCwgM1m6KVbW6tXu5rKczg16r3VWr77mNWxAAC4ZBQLALCIzWbo333a6ppmEcrOc2jEnFXadTTd6lgAAFwSigUAWMjTbtO7/Toopm41pWXladjslTqRkWN1LAAASoxiAQAW8/G0a8qAGNWu5qu9xzJ137zVyslzWB0LAIASoVgAgAuoHuCtGYM6KsDbQ8t2H9ezn/8hp9NpdSwAAIqNYgEALqJpVKDevqe9bIb04aqDmvbbbqsjAQBQbBQLAHAhVzWN0HM3t5Akjf92q37YnGhxIgAAiodiAQAuZnDXeurfuY6cTunBD9Zq8+E0qyMBAHBRFAsAcDGGYeiFW1rqskbVlZmTrxFzVunoyWyrYwEAcEEUCwBwQZ52m969p4MaVPfXoZRTGjl3lbJy862OBQDAeVEsAMBFBft5avqgWAX5eGjN/hT9/VNmigIAuC6KBQC4sAbhAZrYL0Z2m6FP1x7S5EXMFAUAcE0UCwBwcZc1rq5xf2spSXrl+63676YEixMBAHA2igUAuIEBnetqYJe6cjqlhxas04aDKVZHAgCgCIoFALiJ529uocsbmzNFDZ61UruOplsdCQCAQhQLAHATHnabJvWPUetawTqekaOBM1YoITXL6lgAAEiiWACAWwnw9tDsIR0Lp6HtN32Zkk5SLgAA1qNYAICbCQvw1pxhcaoZ7KNdRzPUdyrlAgBgPYoFALih2tX8NP/ezkXLRRrlAgBgHYoFALipumH+RcpFnylLdfBEptWxAABVFMUCANxY3TB/fXBvF0WH+mrfsUz1mbyU2aIAAJagWACAm6sT5qePRnZVw3B/HUnN0l1Tlmrz4TSrYwEAqhiKBQBUAlHBPvpwZBe1qBGk5PQc3T11qdbsP2F1LABAFUKxAIBKIizAW/Pv7ayYutWUlpWn/tOXa8nOZKtjAQCqCIoFAFQiwb6emjssTpc1Klihe/ZK/bQl0epYAIAqgGIBAJWMn5eHpg+K1bUtIpWT59DIuav15frDVscCAFRyFAsAqIR8PO2a2K+DerWrqTyHUw98sFYL1x2yOhYAoBKjWABAJeVpt+n1O9upb1y0nE7p0Q/X68fNDIsCAJQPigUAVGI2m6GXbm2t29rXUp7DqdHvr9FiLugGAJQDigUAVHI2m6FX72ijni3Nay7unbOKdS4AAGWOYgEAVYCH3aa3+rZXlwZhysjJ19DZK3Uk9ZTVsQAAlQjFAgCqCG8PuyYPiFHjiAAlpGVpyKyVOpmVa3UsAEAlQbEAgCok2NdTs4Z0VHigt7YmnNSDH6xTvsNpdSwAQCVAsQCAKqZ2NT/NGBQrbw+b/rc1Sa9+v83qSACASoBiAQBVUJvaIXrljjaSpMmLdunztaxxAQAoHYoFAFRRvdrV0pirGkqSnvhkg9YdSLE2EADArVEsAKAKe/TapurRPKJwGtrEtCyrIwEA3BTFAgCqMJvN0Bt3t1eTyAAlnczWvXNWKSs33+pYAAA3RLEAgCouwNtD0wd2VIifp9YfTNVTn2yQ08lMUQCAkqFYAABUJ8xPE/t1kN1m6PN1hzXl191WRwIAuBmKBQBAktS1YXWNu6WFJOnl77bqpy2JFicCALgTigUAoNCALvXUr1MdOZ3Sgx+s09aENKsjAQDcBMUCAFDEuL+1VKf6oUrPztOgmSt0KOWU1ZEAAG6AYgEAKMLTbtPUAbFqHBGgxLRsDZq5QimZOVbHAgC4OIoFAOAswX6eih8ap6ggH+1MStfQ2SuVnp1ndSwAgAujWAAAzqlmiK/ih8YpyMdDa/anaOjslcrMoVwAAM6NYgEAOK+mUYGaO6yTAr09tGLPcY1gAT0AwHlQLAAAF9Q2OkSzh8bJ38uuxTuPaejslcpgWBQA4C8oFgCAi4qpW02zh8YpwNtDS3Yd04AZy5V6KtfqWAAAF0KxAAAUS8d6oZo3vJOCfT21Zn+K+k5dpmPp2VbHAgC4CIoFAKDY2kaH6IN7O6t6gJc2H0nTXVOXKSE1y+pYAAAXQLEAAJRI8xpB+nBkF9UINqeivXPKUh04nml1LACAxSgWAIASaxAeoA9HdlHdMD/tP56pPpOXamdSutWxAAAWolgAAC5JdKifPhrZRY0jApSQlqW7pizV5sNpVscCAFiEYgEAuGQRQT5aMLKLWtUK0rGMHN09dan+OJhqdSwAgAUoFgCAUgn199L7Izorpm41pWXlacDM5dqWcNLqWACACkaxAACUWpCPp+KHxqlddIhSMnPVb/py7TrKNRcAUJVQLAAAZSLA20PxQ+LUokaQktOz1X/6cqaiBYAqhGIBACgzwX6emjssTg3C/XUkNUuDZ63QySxW6AaAqoBiAQAoU2EB3oofEqfqAd7amnBSo+etUW6+w+pYAIByRrEAKpvcLOnEPil5h5S4STq2S8o8LjnyrU6GKiQ61E+zBneUn5ddv+1I1rOfbZTT6bQ6FgCgHHlYHQCwTHa6lHZYOnn4zI63M1/y9JN8q0n+1aWgWpJPUMm263BIKfuko1sLbtultIPma2UkS448KT9X8vQxX8cvzHyd4GgpJLror77VJMMoun2nUzp1QjqxRzq+Rzqxt+Drgl/TDks61w6cYW4ztJ4U2kCqVt/8NbS++bV3wNlPOf1aKfvP3FIPFHx9QEpPkPKypbwsye5l5vUNkYLrSNXqmbfQ+uavIXUkD++SfZanXz/jqJSeJGUkmZ+vT7D5OtXqm79Pf/2M4BJa1w7WO/e01/D4VVqw6oAaRwZo+OUNrI4FACgnhtPNDyGlpaUpODhYqampCgoq4Q4gXNPpHfPk7eYOpSNfcjrMHcmASPPmHy55BxZvhzI7XUreJh3dZu7oJ20xb6kHipfHO/jMjn5wbckv1Nyx9fCR8nPMner0owU73PvMIpF3qlQfQSGvACkgQjLs5nvNTi/4TC4yZt3ubRYXm6e5459TjKk/fUPN1/PyMz/znHQpK1XKzSyb9yLDLFDV6pnlplo9ySekoGjlSJnHzM8xI6mgRBwteK95F88d0VwKbyqFN5cimkkRLczCURx5OWZBSjsipSea7zf3lPl5eweav//BtcwS4+lTuo+gipr+227939dbZDOkGYM76qqmEVZHAgAUU0n2tSkWKJnTR5Bz/jSNpFeAuaNts5dsW/m50vHdZ47qJxfs+CfvLN6OuYevudMdGGX+6ulvHhF3OqTsNOlUirn9CxUI7yApqKZ51sDuKRk2KSfDfI/pSVJWSsne02l2L6l6k4Kd3WZSSF3zdQIizNexeZo7r6ePxqceNHOmHjDPBKQeMO+/kIDIgrMO9c/+1S+saOnKzzV33E/sNc9yHN9dcJZjt/n9qeMXfi3/CPOMQ0gds2SF1DHfU2ANydPXfL/5OeZnnnnMLFgn9p65Hd8j5WZc2mcpmX++/CPMz89mNwtP5nHzczvn2RmZn0FwbSmwpnkmxWYzf3+z083f14xk6eSRi3/OhQzzvUe1kWq0Lfi1jfkZlPSMSe4pM0dupnmWzCtA8vI3b5WQ0+nUU5/8oQWrDijQ20Ofju6qxpGBVscCABQDxQKl53CYO55H1ksJG6SEP8wj/icTzn+03DvI3AH0CTkzVOXP38tpHhE+mSgd2ykd33X+o9F2LymssbkzbrNLMsydwfREc4c/p4Tz4/tHnNnJD28qRbY0v/YLvfDzstMLdvgPmsN/0g6ZO89ZqeaZCg9v8+yAf5gUVNvckQ1vau7g20s50jD3lJR6yNzxdTrMm3eA5FfdPBrv6Vu67f/ZqRTzveWeMouVzcPcyfUONH8PSvtaTqe5I3962NbpspFz0ixZdi/z98I/3CwP/hHmewyIMO873xCqnEzzzNbps1Gnz0id2KvzFo5zsXsVFNQo8zP28DWfn5Vm/rlL2W+W1XPxqy6FNTLPwATVMAuul59Z5nIyzOed/nN7MqHgz+95ziD5BJt/dsIamn9Go9pIka3MbG4+3Csnz6H+M5ZrxZ7jqhPqp8/HdFOov5fVsQAAF+F2xeLdd9/Vq6++qoSEBLVt21Zvv/224uLiivXcKl0sMpLNHf/TQ4YyjprDOgybeXTWJ8TcWfMLM4eL+IUV3ELNElA4BOW4eQ3AiX1S4kbpyAbz1wvtvNu9zR0dp8PcxqXy9JfCm5g7+dWbnNnxD6l74R3znIyiO2sZR82d4rxsyZA5fMUnyNxOeNOLFwhULjkZ5kXrp6+hyUo9M6TOK6Dg2pZQ82zD6TNWF9pxP12Mjm41i/aRDeavR7eZZxwulYev+boXG27mV12Kan3mVr1Jwd/rambxzs8983f51PFz/5qbaRY0Tz+zrIXUNc9uRTQ3C2QFOJ6Ro17v/q4Dx0+pU/1QzR3WSV4ezCECAK7MrYrFggULNHDgQE2ePFmdOnXSG2+8oY8++kjbtm1TRMTFx+G6RbFwOCQ5Sz5U6DSn0zyafGTDmTMIR9ab95Unu3fBUdPW5pCPyFbmGPmAiKJHkPNyzB23wtuJM1+fPrp/ekjR6eEsofWl6k3NI/xufiQWVVjuKbNsnB7ylZ5klpqcDPMsiJdfwXUykVJgwfVBAVFSQLjkFWgeAJDMfyNy0s0zYyf2mAcLEjaaZwqP7TALUbkxzDMuNdr+6dbGLC2XwpFvHtw4z9/r7Ykn1XviEqVn56lvXLT+dVtrGfwbAAAuy62KRadOndSxY0e98847kiSHw6Ho6GiNHTtWTz311EWf7zLFIjfLPMp/eK15FDN5uznO/NQJcziFnOZ/tnbvgmFC1c7MoHP6a58Qc/hJbqa5k5F2xBwDf2zn+cfAhzUyL1QNrHFmeIwj3xyudCrFfP3M4+a491Onf01RkWEinv7mDn5wLXNbUW3OHBUt7XAeAKWTkykd3WKWjIQ/zMJxfLf5d/uvwxK9gyW/agVnKEP/dKYy1DxTkZdl/vtyMtH89+nYTvM6k3MJqWseWAisYRYiLz/zfke+eaDg9L8thb8WfJ1XsNK2zdP8dy24lvnvS2QrqUY7qWY7/e+QoWHxq+R0Ss/f3EJDL6tfXp8eALi//Fzz+kyLuE2xyMnJkZ+fnz7++GPdeuuthfcPGjRIKSkpWrhw4VnPyc7OVnZ2duH3aWlpio6Otq5YZKVK8X8z1wu42Ew9pWHYzSELpy8crdFWimp1aUMYTs/4c3psu83OWQPA3TidZklw5Jv/4Zz+u1xS6UkFQ7vWm2dCj6wvuEalHAVEar93E32WGK6Nzvoacvvf1LVd6/PndzjOlJlTJ8yDI3++5uX07GmBUWYJ4t8zABUtK/XMZCg5GeYZbbuXeVDHO8Acgupf3TyIfL5/o5xOc3h38nbzYPWh1dKhNeb+X9/5Ffp2/qwkxcLSw9HJycnKz89XZGRkkfsjIyO1devWcz5n/Pjx+sc//lER8YrHO8gckuTINcdB1+pgHvWv3uTM7Dw+IeZ//KenJs1KPfOfY+F/lCfM/zhzMsw/hF4B5nCJ0AbmrXrTspvq0mYvuJgagNsyjLKZRSogQmrcw7yddurEmQkb0pPM65nyss+8rk/wn86KVDtzzYpvqHmw489TCKceNIvKkQ3SkXXmf5jpiaqTnqgHT/8P9MVrcn5plxFYw9yW3cM8w3t69q+slOIPB/MJ+cuwrrZSaMMzw84AoDScTvPftcNrzJ3+w2vMg8uZx4r3fJuHub/oF3rmoFBelnQq1dzGuWZQzC2jKewrgNuNc3n66af1yCOPFH5/+oyFZQxDunOOee1BSB2OlAFwf77VpPpXmLfSCK5t7tj/WU6GOZzryDrlH1qng5uXqGbuAXkqv2AhyYPn355XgFlefIPNgzqGzfxPPjvtzAKKWSnSnkXm7c/POz3EM7SBVK2ueb2Xp4+5Hk1eVsE0xKkFE2EkmRfrpyeZRx/zc6T8PLPwnC5S1eqdmXCiWn2KC+AqnAUzUCb8YR7ISD1o3nLSzSFFjnzz4IjfOYaM+oWZPzPsBdPPn5QyjplrHR3dJiVtNrd7vmnK/cMLho4GmP++5OeaZ5azUs3tZKeaB17SE8zbuRg289+U8GZSrfZSrRipZvvy+7zKmKXFonr16rLb7UpMTCxyf2JioqKios75HG9vb3l7l3D13vJWt6vVCQDAPXj5S3U6SXU6yS4p4LpsXfPOr8pOSdC1tXP1wrV15Gnkm//5FjkzEip5XGR62rxsc7rhP09ykVAww93+JeatPHgHmQWqZruC60jaX3xmO+lMKTqZaO6o5KSbxcvpMD8nTz9z1rJLWbUecFV5OeYBhPSjRRd8tXmemXb8YkOGTvvz1Ph/nh6/2OsTXSKbhzk6pVYHqWYH8+9/WMOLD0/PyzbPSmQcNc8M5+ea93l4m+/Xt5q5XpIb/313iYu34+Li9Pbbb0syL96uU6eO7r//fve6eBsAcEm2JZxU74mLlZGTr7s7Rmt87zKcKSo/z5xZ6/A6c8xyyj5zau1TJ85MUe3pYx5h9A7801oq4ebNL8z8T97mYe4EnDohZSab0xknbzdvpy9Y/zObx5mFMU+vaJ+fW7A4YtqZNU2Ksxjo6VXrI5qbF9RHtjwz5PZiZetcTk/XnX3SzGnzOHPUljMvVdfpa5myUs0/o4bNPKN3eorqS/mzlp5k7ugnbiq4bTSP/BfnmtTTQ4b8C27eQQXT3DvPLGKbdujcU+MbNnMtrIjmZjEPrn1mWLphFAxFL5iKu8gEN8fN9+90nFm81C/M/DchrLEU0UyKaGle41qWa0m5OLe5eFsyp5sdNGiQpkyZori4OL3xxhv68MMPtXXr1rOuvTgXigUAuL+ftiRq+BxzpqiRVzTQUzc0c49paPNzzR2lw2vN25F15lmS/OyLPrWQd3DBFMQFK7AbNnP4RPZJc5HM861ab/Mwy0VEi4KjpUHm+j2O/DPDuzKSzqz5c7EFRm2e5iKPp4d4RTSXwpubawF5B5Tsc8lOP7OOTEayeQbKkWfujPmGmjuK1eqXfLtVyelFUtMOFsy4lmMOy/PyM//M+FY7M2FBSWZwdDik1P0FQ3u2nFlc9Oj28/9Zk8zXC4gyd7IDIs/86hNk7og78s0d9LTDZoFP3HT+Mwcevuafef8Is7zIeea6rIzk8y9Ies5t+Zh/B2q0OTPBTUSLMzPZodTcqlhI0jvvvFO4QF67du301ltvqVOnTsV6LsUCACqH+Sv26+lP/5AkPdyjiR7s0djiRJfI4TB3qI/v/svaJp5mcfDyL9gxiyw6le+5OJ3mzlbyDilpk5S42RznnbjZHK99qTx8/7RDmHf2NOR/FVzHPFob2rBgevSCCUDyssz3dvKwOUV62mHzVtxsQbXMadOrN5GqNzZvYY3N+8919uT0MJqU/QW3A+avqQfMs0DZJwuKk2GWGO8AKTjanEylWv2CCVEKvvYpxj5DXvaZad+P7ZSSd5o7zYWL0mYXrNtiK9jxjjCnaK5Wz7yF1jd/Dap97p1/p9M8Sn5ij7lzX7ijv818T8VinHndwBpmOQysWVAyCyZSSD9qHt1P2XfxAuHpXzCkx3nm99eRV8ws58gW1tCcbjqyVcHaWK3M35MLHTjIyzYLRsZR8wxhRrI5df/p5/gEF7znmubvKVPjlyu3KxalQbEAgMpjxu979M+vNkuSnri+qUZ3b2RxIhd1emaapM3mkeHUg+ZR3qw080yGZ8EQlr8eXT79tVdA0R27/FzzjEbK/oId3K3m+ilJW82zHpfCO8gcCuYfbpYqm4e5Lsup4+ZrXWgWHbvXmfWdbHZzR/P0EK4LFaCS8A83h8kUrmJfMHtjbqb5OmmHzXVeymKBSsNmvhe/UHM9K0euudOennTuoXSneQWYJev0kDy7p3kmIyvFLCQnE8whOyVl9zoztCe82ZkzVNXqnb1eQuHQo8S/nP0q+DorrWDa+oJyFVTTzBzZwjzjxZkDt0exAAC4rXd/3qlXv98myTxz8cA1jdxjWFRllXn8zNH0lH3mjmRWiiSjYAy+b8GR8prm0fKgWub3FzsjkHm84CzAjoLrVXaY18Mc333hI+QevuYFriF1zCPfIXXM2+nX9PI3s52+nuXEPnObJ/aYvx7fXfypQSXJK1Cq3sjcEQ9rZB4hD4g4syit02nmzTx+ppCc2FvwenvMzyw/58KvERBlDjkLb1aws18wBM232oWP7DvyzaP5J4+cuaUdMc8gZacXFDpPyT/M/H0JqmW+Bkf5UQIUCwCAW/tzuRhzVUM9dl1TykVVkZ9r7iCfXutJTvMov6ePOaTIv3rpp3bPSjV3/lMOFKwlddw8M2H3Mm8BkeZOeHBts0SU5vUcDvOsz+kV6k+vomz3OjOEyY1nAULlR7EAALi96b/t1v99vUWSNPyy+nrmpuaUCwCoYCXZ12ZeOQCASxp+eQO92KulJGn673v0wheb5HC49bEwAKjUKBYAAJc1sEs9TejdWoYhzVm6T3//7A/KBQC4KIoFAMCl3R1XR/++o61shvTBygN6/OMNyqdcAIDLoVgAAFze7TG19ebd7WW3GfpkzUE9tGCdcvPLYBpQAECZoVgAANzCLW1r6t17OsjTbujL9Yc19v21ysmjXACAq6BYAADcxvWtojS5f4y87DZ9tylB9723Wlm5l7BAGACgzFEsAABu5ZrmkZo+KFbeHjb9tDVJI+eu5swFALgAigUAwO1c0SRcs4fEydfTrkXbj+qJj9czWxQAWIxiAQBwS10ahmnygBh52Ax9vu6wXv5uq9WRAKBKo1gAANzWlU3C9fLtbSRJU37drdmL91icCACqLooFAMCt3R5TW4/3bCpJevGrzfp1+1GLEwFA1USxAAC4vdHdG+r2DrXlcEpj3l+jXUfTrY4EAFUOxQIA4PYMw9C/erdSTN1qOpmVp+Hxq5SSmWN1LACoUigWAIBKwdvDrikDYlQrxFd7kjM05v01rM4NABWIYgEAqDSqB3hr2sBY+XnZtXjnMf3fV5utjgQAVQbFAgBQqbSoGaTX72onSYpfuk/vLdtnbSAAqCIoFgCASqdny6jCmaJe+GKTluxMtjgRAFR+FAsAQKU0untD9WpXU/kOp+6bt0Z7kzOsjgQAlRrFAgBQKRmGoZdvb6O20SFKPZWr4XNWKS0r1+pYAFBpUSwAAJWWj6dd0wbEKCrIRzuT0jX2/bXKdzitjgUAlRLFAgBQqUUE+Wj6oFj5eNq0aPtRjf9mi9WRAKBSolgAACq9VrWC9VqfdpKk6b/v0YKV+60NBACVEMUCAFAl3NSmhh7q0ViS9MxnG/W/rYkWJwKAyoViAQCoMh68prFubVdTeQ6n7ntvjZbuOmZ1JACoNCgWAIAqwzAMvdqnrXo0j1R2nkPD41dq7f4TVscCgEqBYgEAqFI87Ta9c097dW0YpoycfA2YsUIr9hy3OhYAuD2KBQCgyvHxtGvawFh1bhCq9Ow8DZy5XL/vYHVuACgNigUAoEry9/bQ7CFxurJJuLJyHRoav1I/buaCbgC4VBQLAECV5eNp19SBMerZMlI5eQ6Nem+1vtpw2OpYAOCWKBYAgCrN28Oud+/poF4Fs0U9MH+tPl590OpYAOB2KBYAgCrPw27Tf+5sp7s7RsvhlB77aL3mLN1rdSwAcCsUCwAAJNlthv51W2sN6VZPkvT8wk2a+MtOa0MBgBuhWAAAUMBmM/T8zS009upGkqRXvtum13/YbnEqAHAPFAsAAP7EMAw9el1TPXVDM0nSmz/t0Bs/Ui4A4GIoFgAAnMOoKxvq7zea5eKNH3fo7Z92WJwIAFwbxQIAgPO494qGhWcuXvthu2Yv3mNxIgBwXRQLAAAuYNSVDfXItU0kSf/4arO+WM86FwBwLhQLAAAuYuzVjTSoS105ndKjH67TbzuOWh0JAFwOxQIAgIswDEMv3NJSN7epodx8p0bPW6OdSelWxwIAl0KxAACgGGw2Q6/d2VaxdavpZFaeRsxZpdTMXKtjAYDLoFgAAFBM3h52TR4Qo1ohvtqTnKEx769RXr7D6lgA4BIoFgAAlED1AG9NGxgrPy+7ft+ZrP/7eovVkQDAJVAsAAAooRY1g/SfO9tJkmYv2av3l++3NhAAuACKBQAAl+D6VlF67DpzGtrnF27Ust3HLE4EANaiWAAAcInGXNVIt7StqTyHU/e9t1r7jmVYHQkALEOxAADgEhmGoVfvaKM2tYN1IjNXw+JXKS2LmaIAVE0UCwAASsHH065pA2MVGeStnUnpGvv+WmaKAlAlUSwAACilyCAfTR/YUT6eNi3aflT/+mar1ZEAoMJRLAAAKAOtawcXzhQ1c/EeZooCUOVQLAAAKCM3tq6hR689M1PUkl3JFicCgIpDsQAAoAzdf3Uj/a1wpqg12p540upIAFAhKBYAAJQhwzD0yh1t1L5OiFJP5WrAjOU6cDzT6lgAUO4oFgAAlDEfT7tmDe6oppGBSkzLVv8Zy5WUlmV1LAAoVxQLAADKQYifl+YMi1OdUD/tO5apvtOWKZFyAaASo1gAAFBOIoN89N6wTqoZ7KNdRzN055SlOniCYVEAKieKBQAA5ahOmJ8WjOyi6FBf7TuWqbumLNO+YxlWxwKAMkexAACgnEWH+umjkV3VINxfh1JOqc/kpdqZxGxRACoXigUAABUgKthHC+7tomZRgUo6ma27pizT5sNpVscCgDJDsQAAoIKEB3pr/ojOalUrSMcyctR32jKtP5BidSwAKBMUCwAAKlA1fy+9P6KzOhSsc9Fv+nKt3Hvc6lgAUGoUCwAAKliQj6fmDuukzg1ClZ6dp4EzVuj3HclWxwKAUqFYAABgAX9vD80eEqcrm4TrVG6+hsav1P+2JlodCwAuGcUCAACL+HjaNXVgjK5rEamcPIdGzl2tb/84YnUsALgkFAsAACzk7WHXu/066Ja2NZWb79T989fq+00JVscCgBKjWAAAYDFPu01v3NVOvdvXUr7DqbHvr9WSnVxzAcC9UCwAAHABdpuhV+5oo54tI5WT79CIOau0jqloAbgRigUAAC7Cw27Tm3e3V7dGYcrIydfw+JU6eCLT6lgAUCwUCwAAXIiPp11TB8SqRY0gJafnaNjsVUrPzrM6FgBcFMUCAAAX4+/toRmDYxUe6K1tiSf14Py1ync4rY4FABdEsQAAwAXVCPbV9IGx8vaw6aetSZrw7RarIwHABVEsAABwUW2jQ/TanW0lSdN+26MFK/dbnAgAzo9iAQCAC7u5TU091KOxJOmZzzZq6a5jFicCgHOjWAAA4OIevKaxbmlbU3kOp+6bt1p7kzOsjgQAZ6FYAADg4gzD0Kt3tFHb6BClZOZqWPxKpZ7KtToWABRBsQAAwA34eNo1bUCMagT7aNfRDI2dv1Z5+Q6rYwFAIYoFAABuIiLIR9MGxsrX065ftx/VS98wUxQA10GxAADAjbSqFazX7zJnipq1eK/eX85MUQBcA8UCAAA3c32rGnrsuiaSpOcXbtSSXckWJwIAigUAAG5pzFWN1KudOVPU6HlrtDPppNWRAFRxFAsAANyQYRh6+fY2al/HnClqwIwVOpRyyupYAKowigUAAG7Kx9OuGYM6qlFEgI6kZmnAjOU6lp5tdSwAVRTFAgAANxbq76U5Q+NUM9hHu49maMCMFTqRkWN1LABVEMUCAAA3VzPEV3OGdVL1AC9tPpKmftOXUy4AVDiKBQAAlUCjiADNH9FZ1QO8tflImu6ZvlzHKRcAKhDFAgCASqJxZKA+uLeTqgd4a8uRNN05ZakSUrOsjgWgiqBYAABQiTSKCNSCkZ1VI9hHO5PSdcfkJdqbnGF1LABVAMUCAIBKpmF4gD4a1UX1wvx08MQp9ZmyVFsT0qyOBaCSo1gAAFAJ1a7mpw9HdVGzqEAdPZmtu6Ys09r9J6yOBaASo1gAAFBJRQT6aMG9XdShTohST+Wq3/TlWrIz2epYACopigUAAJVYsJ+n5g7rpMsaVVdmTr4Gz16p/25KsDoWgEqIYgEAQCXn7+2hGYNj1bNlpHLyHLpv3hp9tvag1bEAVDIUCwAAqgBvD7vevaeDbu9QW/kOpx75cL0+WU25AFB2KBYAAFQRHnabXr2jjQZ0riunU3r84/X6esMRq2MBqCQoFgAAVCE2m6F//K2l7oqNlsMpPfjBWv20JdHqWAAqAYoFAABVjM1m6F+9W6tXu5rKczg1et4arWEqWgClRLEAAKAKstsMvdanra5uFqHsPIeGx6/SHlboBlAKFAsAAKooD7tNb/dtr9a1gnU8I0eDZ63QsfRsq2MBcFMUCwAAqrDTU9HWruarfccyNXLuamXn5VsdC4AbolgAAFDFRQT6aPaQjgr09tCqfSf0zGcb5XQ6rY4FwM1QLAAAgBpFBOqdfh1kM6SPVx/U1F93Wx0JgJuhWAAAAEnSlU3C9dzNLSRJE77bqh83Mw0tgOKjWAAAgEKDu9bTPZ3qyFmwxsXWhDSrIwFwExQLAABQyDDMBfS6NgxTRk6+hs1epWRmigJQDBQLAABQhKfdpon9OqhemJ8OpZzSKGaKAlAMFAsAAHCWED8vTR/UUYE+5kxRT3/6BzNFAbggigUAADinRhEBeveeDrLbDH265pCmMFMUgAugWAAAgPO6okm4ni+YKerl77bqqw2HLU4EwFVRLAAAwAUN7FJXA7vUldMpPbxgnX7fkWx1JAAuiGIBAAAuyDAMvXBLS93UuoZy850aOXeVNhxMsToWABdDsQAAABdltxn6z11t1a2ROQ3twJkrtPFQqtWxALgQigUAACgWbw+7pgyIVfs6IUrJzFX/GcspFwAKUSwAAECxBXh7KH5oXGG56Dd9OcOiAEiiWAAAgBIK8vEsLBepp3LVd+oyLdnFBd1AVUexAAAAJRbk46k5Q+PUpYF5zcXgmSv1/aYEq2MBsBDFAgAAXJJAH0/NGtJR17WIVE6+Q/e9t1ofrjpgdSwAFqFYAACAS+bjadfEfh10Z2xtOZzSEx9v0NRfd1kdC4AFKBYAAKBUPOw2vXx7G428ooEk6V/fbNWEb7fK6XRanAxARaJYAACAUjMMQ0/f2FxP3dBMkjR50S49/ekfyndQLoCqgmIBAADKzKgrG2pC79ayGdIHKw/o/vfXKDsv3+pYACpAuRSLvXv3atiwYapfv758fX3VsGFDvfDCC8rJySnyuA0bNujyyy+Xj4+PoqOj9corr5RHHAAAUIHujqujif06yMtu07cbEzRm3lrl5DmsjgWgnJVLsdi6dascDoemTJmiTZs26fXXX9fkyZP197//vfAxaWlpuu6661S3bl2tXr1ar776qsaNG6epU6eWRyQAAFCBrm9VQzMGx8rbw6YftyRq7Pw1ys2nXACVmeGsoCurXn31VU2aNEm7d++WJE2aNEnPPPOMEhIS5OXlJUl66qmn9Pnnn2vr1q3F3m5aWpqCg4OVmpqqoKCgcskOAAAuzaLtRzVizirl5Dl0U+saeqtve9lthtWxABRTSfa1K+wai9TUVIWGhhZ+v3TpUl1xxRWFpUKSevbsqW3btunEiRPn3U52drbS0tKK3AAAgGu6skm4pgyIkZfdpq//OKJxX2xitiigkqqQYrFz5069/fbbGjlyZOF9CQkJioyMLPK4098nJJx/5c7x48crODi48BYdHV0+oQEAQJm4qmmEXr+rnQxDmrtsn97+306rIwEoByUqFk899ZQMw7jg7a/DmA4dOqTrr79effr00YgRI0od+Omnn1Zqamrh7cABVvgEAMDV3dSmhv7xt5aSpP/8sF0LVu63OBGAsuZRkgc/+uijGjx48AUf06BBg8KvDx8+rKuuukpdu3Y966LsqKgoJSYmFrnv9PdRUVHn3b63t7e8vb1LEhsAALiAgV3qKSktW+/8vFPPfLZRtUL8dFnj6lbHAlBGSlQswsPDFR4eXqzHHjp0SFdddZViYmI0a9Ys2WxFT4506dJFzzzzjHJzc+Xp6SlJ+uGHH9S0aVNVq1atJLEAAICbePS6Jjp4IlOfrzus+95brU9Gd1WTyECrYwEoA+VyjcWhQ4fUvXt31alTR//+97919OhRJSQkFLl24p577pGXl5eGDRumTZs2acGCBXrzzTf1yCOPlEckAADgAgzD0Mt3tFHHetV0MjtPQ2at1NGT2VbHAlAGymW62dmzZ2vIkCHn/NmfX27Dhg0aM2aMVq5cqerVq2vs2LF68sknS/RaTDcLAID7OZGRo96TlmhPcobaRofogxGd5etltzoWgL8oyb52ha1jUV4oFgAAuKc9yRm6beJipWTm6vqWUZrYr4NsrHEBuBSXXMcCAADgz+pX99fUAbHystv03aYEvfxd8RfIBeB6KBYAAMAycfVD9WqfNpKkKb/u1rzl+yxOBOBSUSwAAIClerWrpUeubSJJen7hJi3aftTiRAAuBcUCAABYbuzVjdS7Qy3lO5waM2+NtiWctDoSgBKiWAAAAMsZhqEJvduoc4NQpWfnaejslUpKy7I6FoASoFgAAACX4OVh0+T+MWpQ3V+HUk5p+JxVyszJszoWgGKiWAAAAJcR4uelWUM6KtTfSxsOpuqB+WuVk+ewOhaAYqBYAAAAl1I3zF/TBsbIy8OmH7ckaez8NcrNp1wAro5iAQAAXE5M3VBNHWCWi+83Jer+9ykXgKujWAAAAJfUvWmEWS7sZrkYNXe1snLzrY4F4DwoFgAAwGV1bxqhKQNj5O1h009bkzRw5gqlZeVaHQvAOVAsAACAS7uqaYTmDI1ToLeHVuw5rr5Tlyk5PdvqWAD+gmIBAABcXqcGYZp/b2dVD/DSpsNp6jN5qQ6eyLQ6FoA/oVgAAAC30KpWsD4a1VW1Qny1JzlDd0xaqh2JrNANuAqKBQAAcBv1q/vrk/u6qnFEgBLSsnTnlKVafyDF6lgARLEAAABuJirYRx+O7KK20SE6kZmre6Yt0+KdyVbHAqo8igUAAHA71fy99P7wTurWKEwZOfkaMmulvtuYYHUsoEqjWAAAALfk7+2hmYM76vqWUcrJd2j0vNX6cOUBq2MBVRbFAgAAuC1vD7ve7ddBd8VGy+GUnvhkg6b/ttvqWECVRLEAAABuzW4zNOH21hp5ZQNJ0v99vUVzl+2zOBVQ9VAsAACA2zMMQ0/f0Fxjr24kSXp+4UYtXHfI4lRA1UKxAAAAlcYj1zbRwC515XRKj364Xj9vTbI6ElBlUCwAAEClYRiGxt3SUre2q6k8h1Nj3l+jjYdSrY4FVAkUCwAAUKnYbIZe7dNWlzWqrsycfA2dvVKHU05ZHQuo9CgWAACg0vG02zSxfwc1iQxQ0slsDZm1UmlZuVbHAio1igUAAKiUgnw8NWtInMIDvbUt8aTGzFuj3HyH1bGASotiAQAAKq1aIb6aNbij/Lzs+m1Hsp79bKOcTqfVsYBKiWIBAAAqtVa1gvV23/ayGdKCVQc08ZddVkcCKiWKBQAAqPSuaR6pf/ytpSTp1e+3scYFUA4oFgAAoEoY0KWeRlxeX5L0+EcbtHz3MYsTAZULxQIAAFQZT9/QXDe0ilJOvkP3zl2tXUfTrY4EVBoUCwAAUGXYbIZev6ud2tcJUeqpXA2ZtVLJ6dlWxwIqBYoFAACoUnw87Zo2MFZ1Qv20/3imhsevUlZuvtWxALdHsQAAAFVO9QBvzRrSUcG+nlp3IEUPfrBWeaxxAZQKxQIAAFRJDcMDNHVAjLzsNn2/KVEPLVhHuQBKgWIBAACqrE4NwjSxXwd52g19teGIHv5wPeUCuEQUCwAAUKX1aBGpif1i5Gk39OX6wxo7fy3XXACXgGIBAACqvGtbROrdezrIy27TtxsTNGjmCqWeyrU6FuBWKBYAAACSrmsZpdlDOyrQ20PL9xzXXVOWKjEty+pYgNugWAAAABTo2rC6FozsovBAb21NOKneE5doZxKL6AHFQbEAAAD4kxY1g/TpfV3VoLq/DqWcUp/JS7Rm/wmrYwEuj2IBAADwF9Ghfvr4vq5qGx2iE5m5umfaMv2wOdHqWIBLo1gAAACcQ6i/l+aP6KSrmoYrK9ehkXNX6b1l+6yOBbgsigUAAMB5+Hl5aNrAWN3dMVoOp/Ts5xv15o875HQ6rY4GuByKBQAAwAV42G0a37u1HrymsSTp9R+3a/y3WykXwF9QLAAAAC7CMAw9fG0TPXdzC0nS1F9369nPN8rhoFwAp1EsAAAAimnYZfU1oXdrGYY0b/l+vfjVZs5cAAUoFgAAACVwd1wd/fuOtpKk2Uv2asJ3DIsCJIoFAABAid0eU1sv3dZKkjRl0W69+/NOixMB1qNYAAAAXIJ+nerq+YJrLv793+36bO1BixMB1qJYAAAAXKKhl9XXyCsaSJKe+HiDluxKtjgRYB2KBQAAQCk8eX0z3dSmhnLznRo5d7W2J560OhJgCYoFAABAKdhshl7r01axdavpZFaehsxaqaS0LKtjARWOYgEAAFBKPp52TRsYq/rV/XUo5ZSGxq9URnae1bGACkWxAAAAKAPV/L00e0hHhfp7aeOhNI2dv1Z5+Q6rYwEVhmIBAABQRuqG+Wv6oFh5e9j0v61Jem7hJta4QJVBsQAAAChDHepU01t928swpPkr9mviL7usjgRUCIoFAABAGevZMkr/+FtLSdKr32/TJ6tZ4wKVH8UCAACgHAzsUk8jrzTXuHjykw36bcdRixMB5YtiAQAAUE6e7NlMt7StqTyHU/e9t0abD6dZHQkoNxQLAACAcmKzGfp3nzbqVD9U6dl5GjxrhfYkZ1gdCygXFAsAAIBy5O1h19SBsWoWFaikk9nqO3WZ9lIuUAlRLAAAAMpZsK+n3hveSY0jApSQlqW+05Zp3zHKBSoXigUAAEAFqB7grfdHdFbDcH8dSc3SHZOXauOhVKtjAWWGYgEAAFBBwgO9Nf/ezmoWFaijJ7N199Rl+n1HstWxgDJBsQAAAKhAEYE++nBUF3VpEKb07DwNmb1CC9cdsjoWUGoUCwAAgAoW5OOp2UM76uY2NZSb79SDH6zTtF93Wx0LKBWKBQAAgAW8Pex66+72GnZZfUnSS99s0T+/2iyHw2lxMuDSUCwAAAAsYrMZeu7mFnrmxuaSpBm/79EDH6xVdl6+xcmAkqNYAAAAWGzEFQ305t3t5Gk39NWGIxo0c4XSsnKtjgWUCMUCAADABfRqV0uzh8QpwNtDy3Yf152TlyohNcvqWECxUSwAAABcRLdG1bVgZGeFB3pra8JJ9Z64WDsST1odCygWigUAAIALaVkzWJ/e11UNwv11mIX04EYoFgAAAC4mOtRPn4zqqnbRIUo9lav+M5Zr02HKBVwbxQIAAMAFVfP30pxhcWoXHaKUzFz1m75cmw+nWR0LOC+KBQAAgIsK8vEsUi4GzVqhA8czrY4FnBPFAgAAwIWdLhfNawTp6MlsDZq5QsczcqyOBZyFYgEAAODignw8NXtIR9UK8dXu5AwNi1+pUzksogfXQrEAAABwA5FBPoof2lHBvp5auz9FY+evVV6+w+pYQCGKBQAAgJtoFBGoGYNi5e1h049bEvXcwk1yOp1WxwIkUSwAAADcSmy9UL15d3sZhjR/xX69/b+dVkcCJFEsAAAA3M71raL0j7+1lCT954ft+mjVAYsTARQLAAAAtzSwSz3d172hJOnpT//Qou1HLU6Eqo5iAQAA4Kae6NlUt7WvpTyHU6PfW62Nh1idG9ahWAAAALgpwzD08u1t1K1RmDJy8jVk9koW0INlKBYAAABuzMvDpkn9Y9QsKlBHT2Zr8KwVSslkAT1UPIoFAACAmzMX0ItTjWAf7TqaoeHxq5SZk2d1LFQxFAsAAIBKICrYR/FD4xTo46FV+05oePwqVudGhaJYAAAAVBJNIgM1e0ic/L3sWrLrmO6du0pZuZQLVAyKBQAAQCUSU7eaZg+Nk5+XXb/tSNbw+FXKyGZYFMofxQIAAKCS6VgvVLMGd5Sfl12/70zWPdOX60QGF3SjfFEsAAAAKqFODcL0/ojOqubnqfUHUtRnylIdSjlldSxUYhQLAACASqpddIg+GtVFUUE+2pmUrlvfXcwieig3FAsAAIBKrFFEoD4Z3VVNI811Lu6cslQ/bUm0OhYqIYoFAABAJVcrxFcf3ddFlzWqrsycfI2Ys0pzl+61OhYqGYoFAABAFRDk46lZQzrqztjacjil5xZu0ktfb5bD4bQ6GioJigUAAEAV4Wm36eXb2+ix65pIkqb9tkdj3l/DWhcoExQLAACAKsQwDN1/dWO9eXc7edlt+nZjgvpOW6bk9Gyro8HNUSwAAACqoF7tamnusDgF+3pq7f4U9Z64RAeOZ1odC26MYgEAAFBFdWoQpk9Hd1WdUD/tP56pu6Ys1d7kDKtjwU1RLAAAAKqwhuEB+mhUFzUM99fh1CzdNXWpdialWx0LbohiAQAAUMVFBvnog3u7qGlkoBLTstVv+jKGRaHEKBYAAABQeKC35t/bWU0iAwrKxXIlpmVZHQtuhGIBAAAASVKov5feG9ap8JqL/tOX60RGjtWx4CYoFgAAACgUEeSjecM7KTLIWzuS0jV8zirWuUCxUCwAAABQRHSon+YO66QgHw+t3ndCD36wVvms0I2LoFgAAADgLE0iAzV1YKy87DZ9vylRL365SU4n5QLnR7EAAADAOXVuEKb/3NVWkhS/dJ+m/Lrb4kRwZRQLAAAAnNfNbWrq2ZuaS5ImfLtVC9cdsjgRXBXFAgAAABc0/PIGGnZZfUnSYx+t15KdyRYngiuiWAAAAOCinrmxuW5qU0O5+U6NnLtaW46kWR0JLoZiAQAAgIuy2Qy91qet4uqH6mR2nobMWqnDKaesjgUXQrEAAABAsfh42jVtQKyaRAYoIS1Lg2auYAE9FKJYAAAAoNiC/Tw1e0hc4QJ6/WcsV2pmrtWx4AIoFgAAACiRmiG+mje8k8L8vbTpcJoGzlyutCzKRVVHsQAAAECJNYoI1LwRnVTNz1PrD6ZqwPTlDIuq4igWAAAAuCTNooL03vAz5eLOKUuVkJpldSxYhGIBAACAS9ayZrA+HNlFUUE+2pGUrjsmL9Guo+lWx4IFKBYAAAAolcaRgfpoVBfVC/PTwROn1HviEi3ddczqWKhgFAsAAACUWnSonz6+r6va1wlR6qlcDZy5XB+tOmB1LFQgigUAAADKRPUAb80f0blwhe7HP96gV7/fKofDaXU0VIByLxbZ2dlq166dDMPQunXrivxsw4YNuvzyy+Xj46Po6Gi98sor5R0HAAAA5cjH0663726v+69qJEl69+ddGjt/rbJy8y1OhvJW7sXiiSeeUM2aNc+6Py0tTdddd53q1q2r1atX69VXX9W4ceM0derU8o4EAACAcmSzGXqsZ1P9u09bedoNff3HEd09dZmOnsy2OhrKUbkWi2+//Vb//e9/9e9///usn82bN085OTmaOXOmWrZsqbvvvlsPPPCA/vOf/5RnJAAAAFSQO2Jqa87QTgr29dS6Aym69d3F2p540upYKCflViwSExM1YsQIzZ07V35+fmf9fOnSpbriiivk5eVVeF/Pnj21bds2nThxorxiAQAAoAJ1aRimz0Z3Vb0wPx1KOaXbJy7Rij3HrY6FclAuxcLpdGrw4MEaNWqUYmNjz/mYhIQERUZGFrnv9PcJCQnn3XZ2drbS0tKK3AAAAOC6GoQH6NPR3dSxXjWdzM7TwJnL9cu2JKtjoYyVqFg89dRTMgzjgretW7fq7bff1smTJ/X000+XeeDx48crODi48BYdHV3mrwEAAICyFervpbnDOumqpuHKynVoxJxV+m7jEatjoQwZTqez2PN/HT16VMeOXXixkwYNGujOO+/Ul19+KcMwCu/Pz8+X3W5Xv379FB8fr4EDByotLU2ff/554WN+/vlnXX311Tp+/LiqVat2zu1nZ2crO/vMhT9paWmKjo5WamqqgoKCivtWAAAAYIGcPIce/nCdvt5wRB42Q5P6x+jaFpEXfyIskZaWpuDg4GLta5eoWBTX/v37iwxROnz4sHr27KmPP/5YnTp1Uu3atTVp0iQ988wzSkxMlKenpyTp73//uz799FNt3bq12K9VkjcLAAAA6+U7nHr0w3X6fN1hedltmjYoVlc2Cbc6Fs6hJPva5XKNRZ06ddSqVavCW5MmTSRJDRs2VO3atSVJ99xzj7y8vDRs2DBt2rRJCxYs0JtvvqlHHnmkPCIBAADARdhthv7dp61uaBWlnHyH7p2zSst2X3hUDFyfZStvBwcH67///a/27NmjmJgYPfroo3r++ed17733WhUJAAAAFcTDbtObd7dXj+YRys5zaET8Km06nGp1LJRCuQyFqkgMhQIAAHBfWbn5GjhzhVbsOa7qAd769L6uqhN29lIFsIblQ6EAAACA4vDxtGvawFg1iwpUcnq2BsxczgrdbopiAQAAAEsF+3pqztA4RYf6at+xTA2etUIns3KtjoUSolgAAADAchFBPpoztJPC/L206XCa7p2zWlm5+VbHQglQLAAAAOAS6lf3V/zQOAV4e2jp7mN6eME65Tvc+nLgKoViAQAAAJfRqlawpg6IkZfdpm83Juj5hRvl5nMNVRkUCwAAALiUro2q642728kwpHnL9+uNH3dYHQnFQLEAAACAy7mxdQ292KuVJOnNn3Zo7tK91gbCRVEsAAAA4JIGdK6rh3o0liQ9/8UmfbXhsMWJcCEUCwAAALisB69prAGd68rplB5esE6/70i2OhLOg2IBAAAAl2UYhsb9raVual1DuflODYtfqZ+3JlkdC+dAsQAAAIBLs9sM/eeutrqmWYSy8xwaMWeVvlzPsChXQ7EAAACAy/P2sGvygBj9rW1N5TmceuCDtYpfstfqWPgTigUAAADcgqfdptfvaqd+nerI6ZRe+GKTXvxyM4vouQiKBQAAANyG3Wbo/25tpcd7NpUkzVy8R6PeW63MnDyLk4FiAQAAALdiGIbGXNVIb/dt///t3X9Q1XW+x/HX4cA5+AMQJRAUddH8sf5YU4IFc9zKrjs2pnZb3WxZXDUrqfbqTObNujRZxjWnacaLtf4Ka1zJWmnbZO2H5baihhqUK2ijoGYGrWZx0pAf53P/uFdaydTDl3O+HHg+Zs4ffPl8Z15n5j1fvi++5/s9coWG6J2yav161W596am1O1qHRrEAAABAUJr0swT9cU6qojuH6ZMT32hq7k59Wu2xO1aHRbEAAABA0Eru110F88boJzFd9PnX3+nfV+7kuy5sQrEAAABAUOsX00Wb70tXSr/u8pxv0MwXi7Vpz2d2x+pwKBYAAAAIetFdXHp5Toomj/y/x9Eu/NMneuatg/LyxKiAoVgAAACgXXCHOvXc9JF68KYBkqTc94/o96+Uqra+0eZkHQPFAgAAAO2Gw+HQgn8bpGfuGKHQEIf+8vFJZa4r1tnzPI7W3ygWAAAAaHd+lZyol2alKMIdqg8rv9KsvD1814WfUSwAAADQLqUPiNFLs78vF7Pz9uq7Oj4W5S8UCwAAALRb1/WJVt6sFHV1h2pXxWnN27BP9Y1eu2O1SxQLAAAAtGuj+0Yr73fXKzwsRO8f+qcWvvYJT4vyA4oFAAAA2r3kft31/F2j5QxxqKDkcz1VWC5jKBetiWIBAACADuHGwbF65o4RkqS1Oyr1wt8qbE7UvlAsAAAA0GHcPqq3Hr11iCTpv7ce1Ct7jtucqP2gWAAAAKBDmTM2Sff9or8k6T8379dbB6psTtQ+UCwAAADQ4SycMEjTknvLa6QHNpbow4rTdkcKehQLAAAAdDgOh0NLpw7XLT+NU12DV3PW79WBk9/YHSuoUSwAAADQIYU6Q7TizuuU8pPu8pxvUOa6PTp2+qzdsYIWxQIAAAAdVniYU2sykzUkPlKnvj2vjLXF+tJTa3esoESxAAAAQIcWGR6m9bOuV5/unXX8q3PKXLdHNbX1dscKOhQLAAAAdHixEeF6eXaKYrq6Vf5FjWbn7ZGHcuETigUAAAAgqW+PLlo/63pFhIdqz9Ez+s2aD/X1uTq7YwUNigUAAADw/4YmRGnj3T9XdOcwfXziG03/w259WcM9F1eDYgEAAAD8i2G9orTpnjTFRrh1qNqjKblFKjtZY3esNo9iAQAAADRzbVyEXrs3XUnXdNHJb2r1qxd2alt5td2x2jSKBQAAAHAJfXp0VsF9YzRmQA+drWvUnJf2as3fK2SMsTtam0SxAAAAAH5EVOcw5f0uRXem9JEx0pNbyvVIwT9U3+i1O1qbQ7EAAAAALiPMGaKlU4fp0VuHyOGQNhYfV+a6Yp4Y1QzFAgAAALgCh8OhOWOTtDojWZ1dTu08clpTcot05J/f2h2tzaBYAAAAAFdp/E/j9Kf70tWrWycdPX1OU3KLtPPIKbtjtQkUCwAAAMAHQ+Ij9ef7x2h032h5ahs0c90evfnJSbtj2Y5iAQAAAPgopqtbG+ak6pdDe6qu0asHNpYor6jS7li2olgAAAAALRAe5lTuXaOU8fO+MkZ6/C9l+sPfjtgdyzYUCwAAAKCFnCEOPTF5qB68+VpJ0tN/PaiV2w/bnMoeFAsAAADAAofDoQW3DNSCWwZKkpZtPaRVH3S8KxcUCwAAAKAVPHjztXpowiBJ0tLCg3p172c2JwosigUAAADQSrJuHKB7xiVJkhZt3q93y6ptThQ4FAsAAACgFS365WDdMbq3Gr1GWX/8SHuOfmV3pICgWAAAAACtyOFwKOf24bp5cKzON3g1O2+PDlbV2B3L7ygWAAAAQCsLdYbof2aMUnLfaNXUNihzXbFOnDlndyy/olgAAAAAftDJ5dTazOs1MK6rqmvOK2NtsU59e97uWH5DsQAAAAD8JKpzmF6alape3Tqp8tRZzXyxWJ7aertj+QXFAgAAAPCjnlHhenl2inp0cekfn9fo7pf2qra+0e5YrY5iAQAAAPhZ0jVdtX5Wirq6Q7W74is9uLFEDY1eu2O1KooFAAAAEADDekVp9W+T5QoN0dtl1XqkYL+MMXbHajUUCwAAACBA0vr30Io7r1OIQ9q094Se/uvBdlMuKBYAAABAAE0Y2lM5t4+QJK36oEJPbSlvF+WCYgEAAAAE2LTrE/XE5KGSpDU7KvVffz4grze4ywXFAgAAALDBb9P6Kef24XI4pJd3H9N/vFIa1E+LolgAAAAANvl1Sh89O+1nCg1x6I2PT+o3az7U6SD9Ej2KBQAAAGCjqdf11vpZKYoID9XeY2c0deVOHf7yW7tj+YxiAQAAANhszIAYFcxLV5/unXX8q3OaurJIRYdP2R3LJxQLAAAAoA0YEBuhgnnpGt03Wp7aBmWuK1Z+8XG7Y101igUAAADQRvTo6taGOamaPDJBDV6jZ9/5VDW19XbHuiqhdgcAAAAA8L3wMKeemz5SA67pql8MilVkeJjdka4KxQIAAABoYxwOhx64+Vq7Y/iEj0IBAAAAsIxiAQAAAMAyigUAAAAAyygWAAAAACyjWAAAAACwjGIBAAAAwDKKBQAAAADLKBYAAAAALKNYAAAAALCMYgEAAADAMooFAAAAAMsoFgAAAAAso1gAAAAAsIxiAQAAAMAyigUAAAAAyygWAAAAACyjWAAAAACwjGIBAAAAwDKKBQAAAADLKBYAAAAALKNYAAAAALCMYgEAAADAMooFAAAAAMsoFgAAAAAso1gAAAAAsIxiAQAAAMAyigUAAAAAyygWAAAAACyjWAAAAACwjGIBAAAAwLJQuwNYZYyRJNXU1NicBAAAAGhfLpxjXzjnvpygLxYej0eSlJiYaHMSAAAAoH3yeDyKioq67BqHuZr60YZ5vV6dPHlSERERcjgctmSoqalRYmKiPvvsM0VGRtqSAW0LM4HmmAk0x0ygOWYCzbWFmTDGyOPxKCEhQSEhl7+LIuivWISEhKh37952x5AkRUZGciDARZgJNMdMoDlmAs0xE2jO7pm40pWKC7h5GwAAAIBlFAsAAAAAllEsWoHb7VZ2drbcbrfdUdBGMBNojplAc8wEmmMm0FywzUTQ37wNAAAAwH5csQAAAABgGcUCAAAAgGUUCwAAAACWUSwAAAAAWEaxuEq5ubnq16+fwsPDlZqaquLi4suuf/XVVzV48GCFh4dr+PDhKiwsDFBSBIovM7F69WqNHTtW0dHRio6O1vjx4684Qwg+vh4nLsjPz5fD4dCUKVP8GxAB5+tMfP3118rKylJ8fLzcbrcGDhzI3492xteZeO655zRo0CB16tRJiYmJmj9/vmprawOUFv70wQcfaNKkSUpISJDD4dDrr79+xX22b9+uUaNGye12a8CAAcrLy/N7Tp8YXFF+fr5xuVxm3bp15sCBA+buu+823bp1M9XV1ZdcX1RUZJxOp1m2bJkpKyszjz76qAkLCzP79+8PcHL4i68zMWPGDJObm2tKSkpMeXm5mTlzpomKijInTpwIcHL4i68zcUFlZaXp1auXGTt2rJk8eXJgwiIgfJ2J8+fPm+TkZDNx4kSzY8cOU1lZabZv325KS0sDnBz+4utMbNiwwbjdbrNhwwZTWVlp3nrrLRMfH2/mz58f4OTwh8LCQrN48WKzefNmI8kUFBRcdn1FRYXp3LmzWbBggSkrKzMrVqwwTqfTbN26NTCBrwLF4iqkpKSYrKyspp8bGxtNQkKCefrppy+5ftq0aebWW2+9aFtqaqq55557/JoTgePrTDTX0NBgIiIizPr16/0VEQHWkploaGgw6enpZs2aNSYzM5Ni0c74OhPPP/+8SUpKMnV1dYGKiADzdSaysrLMTTfddNG2BQsWmDFjxvg1JwLvaorFwoULzdChQy/aNn36dDNhwgQ/JvMNH4W6grq6Ou3bt0/jx49v2hYSEqLx48dr165dl9xn165dF62XpAkTJvzoegSXlsxEc+fOnVN9fb26d+/ur5gIoJbOxBNPPKHY2FjNnj07EDERQC2ZiTfeeENpaWnKyspSXFychg0bpqVLl6qxsTFQseFHLZmJ9PR07du3r+njUhUVFSosLNTEiRMDkhltSzCcX4baHaCtO3XqlBobGxUXF3fR9ri4OB08ePCS+1RVVV1yfVVVld9yInBaMhPNPfzww0pISPjBAQLBqSUzsWPHDq1du1alpaUBSIhAa8lMVFRU6L333tNdd92lwsJCHT58WPPmzVN9fb2ys7MDERt+1JKZmDFjhk6dOqUbbrhBxhg1NDTo3nvv1SOPPBKIyGhjfuz8sqamRt999506depkU7LvccUCCLCcnBzl5+eroKBA4eHhdseBDTwejzIyMrR69WrFxMTYHQdthNfrVWxsrFatWqXRo0dr+vTpWrx4sV544QW7o8Em27dv19KlS7Vy5Up99NFH2rx5s7Zs2aIlS5bYHQ24JK5YXEFMTIycTqeqq6sv2l5dXa2ePXtecp+ePXv6tB7BpSUzccHy5cuVk5Ojd999VyNGjPBnTASQrzNx5MgRHT16VJMmTWra5vV6JUmhoaE6dOiQ+vfv79/Q8KuWHCfi4+MVFhYmp9PZtG3IkCGqqqpSXV2dXC6XXzPDv1oyE4899pgyMjI0Z84cSdLw4cN19uxZzZ07V4sXL1ZICP8f7kh+7PwyMjKyTVytkLhicUUul0ujR4/Wtm3bmrZ5vV5t27ZNaWlpl9wnLS3tovWS9M477/zoegSXlsyEJC1btkxLlizR1q1blZycHIioCBBfZ2Lw4MHav3+/SktLm1633XabbrzxRpWWlioxMTGQ8eEHLTlOjBkzRocPH24qmZL06aefKj4+nlLRDrRkJs6dO/eD8nCheBpj/BcWbVJQnF/affd4MMjPzzdut9vk5eWZsrIyM3fuXNOtWzdTVVVljDEmIyPDLFq0qGl9UVGRCQ0NNcuXLzfl5eUmOzubx822M77ORE5OjnG5XOa1114zX3zxRdPL4/HY9RbQynydieZ4KlT74+tMHD9+3ERERJj777/fHDp0yLz55psmNjbWPPnkk3a9BbQyX2ciOzvbREREmI0bN5qKigrz9ttvm/79+5tp06bZ9RbQijwejykpKTElJSVGknn22WdNSUmJOXbsmDHGmEWLFpmMjIym9RceN/vQQw+Z8vJyk5uby+Nmg9WKFStMnz59jMvlMikpKWb37t1Nvxs3bpzJzMy8aP2mTZvMwIEDjcvlMkOHDjVbtmwJcGL4my8z0bdvXyPpB6/s7OzAB4ff+Hqc+FcUi/bJ15nYuXOnSU1NNW632yQlJZmnnnrKNDQ0BDg1/MmXmaivrzePP/646d+/vwkPDzeJiYlm3rx55syZM4EPjlb3/vvvX/Lc4MIMZGZmmnHjxv1gn5EjRxqXy2WSkpLMiy++GPDcl+MwhmtpAAAAAKzhHgsAAAAAllEsAAAAAFhGsQAAAABgGcUCAAAAgGUUCwAAAACWUSwAAAAAWEaxAAAAAGAZxQIAAACAZRQLAAAAAJZRLAAAAABYRrEAAAAAYBnFAgAAAIBl/wvd5GRm6rXHngAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAMsCAYAAADJXzRsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgmUlEQVR4nOzdd3gU1R7G8Xc2vYcSCIQQCL03AemgICIoKKgUFSzYCyr2jr33rldQEUFFsKGCAtJ7ryEktNAhndSd+8eYYCBA+mST7+d58ty7s7Ozv90A7rvnnN8xTNM0BQAAAADF4LC7AAAAAACuj2ABAAAAoNgIFgAAAACKjWABAAAAoNgIFgAAAACKjWABAAAAoNgIFgAAAACKjWABAAAAoNgIFgAAAACKjWABoNIbM2aM6tWrl+dYcnKybrrpJoWGhsowDI0bN65Ua6hXr57GjBlTqs9xJrGxsTIMQxMnTrTl+Su7efPmyTAMzZs3r0Svm9+fawAoTQQLAC5nw4YNGjZsmCIiIuTt7a2wsDD169dP7777bok9xwsvvKCJEyfqtttu01dffaVrr732nI/Jzs5W7dq1ZRiGZs2aVWK1lJRvvvlGb731lt1l5MoJNDk/bm5uqlu3ri6//HKtXbs2z7mGYejOO+/M97E//PDDadd++umnZRiGjhw5kntszJgxMgxDrVu3lmmapz3m1Oc4k4yMDL399ttq166dAgMDFRwcrBYtWujmm2/W1q1bC/EOFF9cXJyefvrp094vALCDu90FAEBhLF68WH369FHdunU1duxYhYaGas+ePVq6dKnefvtt3XXXXSXyPH///bfOP/98PfXUU4V6zP79+1WvXj1NnjxZAwYMKJFaSso333yjjRs3njb6EhERoRMnTsjDw8OWukaMGKFLLrlE2dnZ2rJliz788EPNmjVLS5cuVdu2bc/5+AkTJuiKK66QYRgFer4NGzZo+vTpGjp0aJHqHTp0qGbNmqURI0Zo7NixyszM1NatW/XLL7+oa9euatq0aZGuWxRxcXF65plnVK9evdPeq08//VROp7PMagEAggUAl/L8888rKChIK1asUHBwcJ77Dh06VGLPc+jQITVv3rxQj/n666/Vvn17jR49Wo8++qhSUlLk5+dXYjWVFsMw5O3tbdvzt2/fXtdcc03u7W7duumyyy7Thx9+qI8//visj23btq3Wrl2rH3/8UVdcccU5n8vHx0fh4eGFDiM5VqxYoV9++UXPP/+8Hn300Tz3vffee4qPjy/U9UqTXUERQOXFVCgALiU6OlotWrQ4LVRIUo0aNU479vXXX6tDhw7y8fFR1apVNXz4cO3Zs+eM18+Z7x4TE6Nff/01d7pNbGzsWes6ceKEfvzxRw0fPlxXXXWVTpw4oZkzZ552nmmaeu6551SnTh35+vqqT58+2rRp02nnHTt2TOPHj1erVq3k7++vwMBADRgwQOvWrcu33qlTp+rRRx9VaGio/Pz8dNlll+V5nb1799avv/6qXbt25b6mnPn3p66xeO2112QYhnbt2nVaXY888og8PT11/Pjx3GPLli3TxRdfrKCgIPn6+qpXr15atGjRWd+vs7ngggskSTExMec8d/jw4WrcuLEmTJiQ7/SmUzkcDj3++ONav369fvzxx0LXFh0dLckKP6dyc3NTtWrV8hxbs2aNBgwYoMDAQPn7++vCCy/U0qVLz/k8Z1pz07t3b/Xu3VuS9bvv2LGjJOn666/P/b3m/B7zW2ORkpKi+++/X+Hh4fLy8lKTJk302muvnfbe5UwLmzFjhlq2bCkvLy+1aNFCv//++zlrB1B5ESwAuJSIiAitWrVKGzduPOe5zz//vK677jo1atRIb7zxhsaNG6e//vpLPXv2POM3y82aNdNXX32l6tWrq23btvrqq6/01VdfKSQk5KzP9dNPPyk5OVnDhw9XaGioevfurcmTJ5923pNPPqknnnhCbdq00auvvqrIyEhddNFFSklJyXPezp07NWPGDA0aNEhvvPGGHnjgAW3YsEG9evVSXFxcvq/1119/1UMPPaS7775bs2fPVt++fXXixAlJ0mOPPaa2bduqevXqua/pTOstrrrqKhmGoWnTpp1237Rp03TRRRepSpUqkqzpXz179lRiYqKeeuopvfDCC4qPj9cFF1yg5cuXn/U9O5OcD++nfkjPj5ubmx5//HGtW7euwEFh5MiRatSoUYHDyH9FRERIkiZPnqysrKyznrtp0yb16NFD69at04MPPqgnnnhCMTEx6t27t5YtW1ao581Ps2bNNGHCBEnSzTffnPt77dmzZ77nm6apyy67TG+++aYuvvhivfHGG2rSpIkeeOAB3Xfffaedv3DhQt1+++0aPny4XnnlFaWlpWno0KE6evRosWsHUEGZAOBC/vzzT9PNzc10c3Mzu3TpYj744IPmH3/8YWZkZOQ5LzY21nRzczOff/75PMc3bNhguru75zk+evRoMyIiIs95ERER5sCBAwtc16BBg8xu3brl3v7kk09Md3d389ChQ7nHDh06ZHp6epoDBw40nU5n7vFHH33UlGSOHj0691haWpqZnZ2d5zliYmJMLy8vc8KECbnH5s6da0oyw8LCzMTExNzj06ZNMyWZb7/9du6xgQMHnvY6c64ryfziiy9yj3Xp0sXs0KFDnvOWL19uSjK//PJL0zRN0+l0mo0aNTL79++f5/Wkpqaa9evXN/v163emtyvP8z7zzDPm4cOHzQMHDpjz5s0z27VrZ0oyf/jhh9xzJZl33HHHaY999dVXzaysLLNRo0ZmmzZtcut46qmnTEnm4cOHcx8zevRo08/PzzRN05w0aZIpyZw+ffoZnyM/TqfT7NWrlynJrFmzpjlixAjz/fffN3ft2nXauUOGDDE9PT3N6Ojo3GNxcXFmQECA2bNnz9xjOb/DuXPn5h6LiIjI8+chR69evcxevXrl3l6xYsVpv7v/vt7//r5nzJhhSjKfe+65POcNGzbMNAzD3LFjR+4xSaanp2eeY+vWrTMlme+++25+bw0AmIxYAHAp/fr105IlS3TZZZdp3bp1euWVV9S/f3+FhYXpp59+yj1v+vTpcjqduuqqq3TkyJHcn9DQUDVq1Ehz584tsZqOHj2qP/74QyNGjMg9NnTo0NO+9Z8zZ44yMjJ011135Znbn18rWy8vLzkc1j/R2dnZOnr0qPz9/dWkSROtXr36tPOvu+46BQQE5N4eNmyYatWqpd9++61Ir+nqq6/WqlWrckcPJGnq1Kny8vLS4MGDJUlr165VVFSURo4cqaNHj+a+xykpKbrwwgv1zz//FGjx8FNPPaWQkJDckZ7o6Gi9/PLLBVozIeUdtZgxY0aBHjNq1KgijVoYhqE//vhDzz33nKpUqaIpU6bojjvuUEREhK6++urckbDs7Gz9+eefGjJkiCIjI3MfX6tWLY0cOVILFy5UYmJigZ+3JPz2229yc3PT3Xffnef4/fffL9M0T+tk1rdvXzVo0CD3duvWrRUYGKidO3eWSb0AXA/BAoDL6dixo6ZPn67jx49r+fLleuSRR5SUlKRhw4Zp8+bNkqSoqCiZpqlGjRopJCQkz8+WLVtKdKH31KlTlZmZqXbt2mnHjh3asWOHjh07ps6dO+eZDpWzZqFRo0Z5Hh8SEpI7tSiH0+nUm2++qUaNGsnLy0vVq1dXSEiI1q9fr4SEhNNqOPWahmGoYcOG51wbciZXXnmlHA6Hpk6dKsmaRvPdd9/lrheQrPdYkkaPHn3ae/zZZ58pPT0931pPdfPNN2v27Nn666+/tGrVKh06dEgPPvhgoeodNWqUGjZsWOCgkBNG1q5dW+AwksPLy0uPPfaYtmzZori4OE2ZMkXnn3++pk2bltuu9vDhw0pNTVWTJk1Oe3yzZs3kdDrPutanNOzatUu1a9fOE0Bz6sm5/7/q1q172jWqVKmSZ30NAPwXXaEAuCxPT0917NhRHTt2VOPGjXX99dfru+++01NPPSWn05m7n4Sbm9tpj/X39y+xOnLCQ34LeiVrvcR/v7UuiBdeeEFPPPGEbrjhBj377LOqWrWqHA6Hxo0bVyYtRGvXrq0ePXpo2rRpevTRR7V06VLt3r1bL7/8cu45OXW8+uqrZ2wLW5D3uVGjRurbt2+x6s0JCmPGjMl30Xx+Ro0apWeffVYTJkzQkCFDivS8tWrV0vDhwzV06FC1aNFC06ZNK5GNBs/UrSo7OzvfP8+l4UzPU5gRHgCVC8ECQIVw3nnnSZL2798vSWrQoIFM01T9+vXVuHHjUnvemJgYLV68WHfeead69eqV5z6n06lrr71W33zzjR5//PHchb9RUVF5gsbhw4dP+xb4+++/V58+ffT555/nOR4fH6/q1aufVkfO6EEO0zS1Y8cOtW7dOvdYYVurXn311br99tu1bds2TZ06Vb6+vrr00ktz78+ZJhMYGFjsYFASrrnmGj333HN65plndNlll53z/KKEkTPx8PBQ69atFRUVpSNHjigkJES+vr7atm3baedu3bpVDodD4eHhZ7xelSpV8m0wsGvXrjx/dgrzO42IiNCcOXOUlJSUZ9QiZ1O/nD+fAFBUTIUC4FLmzp2b7zemOWsJcqaeXHHFFXJzc9Mzzzxz2vmmaZZYZ5uc0YoHH3xQw4YNy/Nz1VVXqVevXrnn9O3bVx4eHnr33Xfz1JRfdyY3N7fT6v7uu++0b9++fOv48ssvlZSUlHv7+++/1/79+/Ns0ufn51egqUk5hg4dKjc3N02ZMkXfffedBg0alGdfjg4dOqhBgwZ67bXXlJycfNrjDx8+XODnKgn/nd703/U2Z3PNNdeoYcOGeuaZZwp0flRUlHbv3n3a8fj4eC1ZskRVqlRRSEiI3NzcdNFFF2nmzJl5pqMdPHhQ33zzjbp37547pSw/DRo00NKlS5WRkZF77Jdffjlt+lTO76Mg+2fkbEL43nvv5Tn+5ptvyjCMcrehIwDXw4gFAJdy1113KTU1VZdffrmaNm2qjIwMLV68WFOnTlW9evV0/fXXS7I+mD333HN65JFHFBsbqyFDhiggIEAxMTH68ccfdfPNN2v8+PHFrmfy5Mlq27btGb99vuyyy3TXXXdp9erVat++vcaPH68XX3xRgwYN0iWXXKI1a9Zo1qxZp41CDBo0SBMmTND111+vrl27asOGDZo8efIZp1RVrVpV3bt31/XXX6+DBw/qrbfeUsOGDTV27Njcczp06KCpU6fqvvvuU8eOHeXv759nBOJUNWrUUJ8+ffTGG28oKSlJV199dZ77HQ6HPvvsMw0YMEAtWrTQ9ddfr7CwMO3bt09z585VYGCgfv7554K+lSUiZ3rT2rVrC3S+m5ubHnvssdw/N+eybt06jRw5UgMGDFCPHj1UtWpV7du3T5MmTVJcXJzeeuut3ClEzz33nGbPnq3u3bvr9ttvl7u7uz7++GOlp6frlVdeOevz3HTTTfr+++918cUX66qrrlJ0dLS+/vrrPIupJevPeXBwsD766CMFBATIz89PnTt3Vv369U+75qWXXqo+ffroscceU2xsrNq0aaM///xTM2fO1Lhx4067NgAUmi29qACgiGbNmmXecMMNZtOmTU1/f3/T09PTbNiwoXnXXXeZBw8ePO38H374wezevbvp5+dn+vn5mU2bNjXvuOMOc9u2bbnnFLXd7KpVq0xJ5hNPPHHGc2JjY01J5r333muapmlmZ2ebzzzzjFmrVi3Tx8fH7N27t7lx48bT2oumpaWZ999/f+553bp1M5csWXJau9GcVqVTpkwxH3nkEbNGjRqmj4+POXDgwNNaoCYnJ5sjR440g4ODTUm5rzm/drM5Pv30U1OSGRAQYJ44cSLf17hmzRrziiuuMKtVq2Z6eXmZERER5lVXXWX+9ddfZ33//tsy9lx0lnazp/riiy9MSWdtN/tfmZmZZoMGDQrUbvbgwYPmSy+9ZPbq1cusVauW6e7ublapUsW84IILzO+///6081evXm3279/f9Pf3N319fc0+ffqYixcvznNOfu1mTdM0X3/9dTMsLMz08vIyu3XrZq5cufK0379pmubMmTPN5s2bm+7u7nl+j/n9uU5KSjLvvfdes3bt2qaHh4fZqFEj89VXX83TLtg0z9x690xtcAHANE3TME1WYQGAq5o3b5769Omj7777TsOGDbO7HABAJcYaCwAAAADFRrAAAAAAUGwECwAAAADFxhoLAAAAAMXGiAUAAACAYiNYAAAAACg2l98gz+l0Ki4uTgEBATIMw+5yAAAAgArDNE0lJSWpdu3acjjOPibh8sEiLi7ujDveAgAAACi+PXv2qE6dOmc9x+WDRUBAgCTrxQYGBtpcDQAAAFBxJCYmKjw8PPcz99m4fLDImf4UGBhIsAAAAABKQUGWHLB4GwAAAECxESwAAAAAFBvBAgAAAECxufwaCwAAUDlkZ2crMzPT7jKACsXDw0Nubm4lci2CBQAAKNdM09SBAwcUHx9vdylAhRQcHKzQ0NBi7wlHsAAAAOVaTqioUaOGfH192RAXKCGmaSo1NVWHDh2SJNWqVatY1yNYAACAcis7Ozs3VFSrVs3ucoAKx8fHR5J06NAh1ahRo1jToli8DQAAyq2cNRW+vr42VwJUXDl/v4q7holgAQAAyj2mPwGlp6T+fhEsAAAAABQbwQIAAKAS6927t8aNG2d3GaXu6aefVtu2bcvs+SZOnKjg4OBiX2fevHkyDMMluqIRLAAAAErBmDFjZBiGXnrppTzHZ8yY4VJTuyZOnCjDMHTxxRfnOR4fHy/DMDRv3rwCX2vMmDEaMmRIyRZYgeQX8rp27ar9+/crKCjInqIKgWABAABQSry9vfXyyy/r+PHjZf7cJbmZoLu7u+bMmaO5c+eW2DXLimmaysrKsruMIvP09CyRPSbKAsECAACglPTt21ehoaF68cUXz3rewoUL1aNHD/n4+Cg8PFx33323UlJScu83DEMzZszI85jg4GBNnDhRkhQbGyvDMDR16lT16tVL3t7emjx5so4ePaoRI0YoLCxMvr6+atWqlaZMmVLo1+Hn56cbbrhBDz/88FnP27Nnj6666ioFBweratWqGjx4sGJjYyVZU5EmTZqkmTNnyjCM3NGOYcOG6c4778y9xrhx42QYhrZu3SpJysjIkJ+fn+bMmSNJSk9P1913360aNWrI29tb3bt314oVK3IfnzN1aNasWerQoYO8vLy0cOHC02qNjo5WZGSk7rzzTpmmedr9pmnq6aefVt26deXl5aXatWvr7rvvzr3/+PHjuu6661SlShX5+vpqwIABioqKOuN7k99ozbhx49S7d+/c++fPn6+333479/2JjY3NdyrUDz/8oBYtWsjLy0v16tXT66+/nue69erV0wsvvKAbbrhBAQEBqlu3rj755JMz1lZSCBYAAMClmKap1IwsW37y+wB6Nm5ubnrhhRf07rvvau/evfmeEx0drYsvvlhDhw7V+vXrNXXqVC1cuDDPh+2Cevjhh3XPPfdoy5Yt6t+/v9LS0tShQwf9+uuv2rhxo26++WZde+21Wr58eaGv/fTTT2vDhg36/vvv870/MzNT/fv3V0BAgBYsWKBFixbJ399fF198sTIyMjR+/HhdddVVuvjii7V//37t379fXbt2Va9evfJMp5o/f76qV6+ee2zFihXKzMxU165dJUkPPvigfvjhB02aNEmrV69Ww4YN1b9/fx07duy09+Kll17Sli1b1Lp16zz3rV+/Xt27d9fIkSP13nvv5Tsa8MMPP+jNN9/Uxx9/rKioKM2YMUOtWrXKvX/MmDFauXKlfvrpJy1ZskSmaeqSSy4p8kjR22+/rS5dumjs2LG57094ePhp561atUpXXXWVhg8frg0bNujpp5/WE088kRsyc7z++us677zztGbNGt1+++267bbbtG3btiLVVlBskAcAAFzKicxsNX/yD1uee/OE/vL1LNzHp8svv1xt27bVU089pc8///y0+1988UWNGjUqd259o0aN9M4776hXr1768MMP5e3tXeDnGjdunK644oo8x8aPH5/7/++66y798ccfmjZtmjp16lSo11G7dm3dc889euyxx/JdJzF16lQ5nU599tlnuR/Uv/jiCwUHB2vevHm66KKL5OPjo/T0dIWGhuY+rnfv3rrnnnt0+PBhubu7a/PmzXriiSc0b9483XrrrZo3b546duwoX19fpaSk6MMPP9TEiRM1YMAASdKnn36q2bNn6/PPP9cDDzyQe90JEyaoX79+p9W5ePFiDRo0SI899pjuv//+M77e3bt3KzQ0VH379pWHh4fq1q2b+55FRUXpp59+0qJFi3IDz+TJkxUeHq4ZM2boyiuvLNR7K0lBQUHy9PSUr69vnvfnVG+88YYuvPBCPfHEE5Kkxo0ba/PmzXr11Vc1ZsyY3PMuueQS3X777ZKkhx56SG+++abmzp2rJk2aFLq2gmLEAgAAoJS9/PLLmjRpkrZs2XLafevWrdPEiRPl7++f+9O/f385nU7FxMQU6nnOO++8PLezs7P17LPPqlWrVqpatar8/f31xx9/aPfu3UV6HQ899JAOHz6s//3vf/m+jh07diggICD3dVStWlVpaWmKjo4+4zVbtmypqlWrav78+VqwYIHatWunQYMGaf78+ZKsEYyc6ULR0dHKzMxUt27dch/v4eGhTp06nfbenvpeSFZY6Nevn5588smzhgpJuvLKK3XixAlFRkZq7Nix+vHHH3PXamzZskXu7u7q3Llz7vnVqlVTkyZN8v0dl6QtW7bkef2S1K1bN0VFRSk7Ozv32H9HaQzDUGhoqA4dOlSqtTFiAQAAXIqPh5s2T+hv23MXRc+ePdW/f3898sgjeb5VlqTk5GTdcssteebv56hbt64k64PhqdOw8pty4+fnl+f2q6++qrfffltvvfWWWrVqJT8/P40bN04ZGRlFeh3BwcF65JFH9Mwzz2jQoEGnvY4OHTpo8uTJpz0uJCTkjNc0DEM9e/bUvHnz5OXlpd69e6t169ZKT0/Xxo0btXjx4jyjLgV16nuRU0ft2rU1ZcoU3XDDDQoMDDzj48PDw7Vt2zbNmTNHs2fP1u23365XX301N/AUlsPhKNDvsKR4eHjkuW0YhpxOZ6k9n0SwAAAALsYwjEJPRyoPXnrpJbVt2/a0qSjt27fX5s2b1bBhwzM+NiQkRPv378+9HRUVpdTU1HM+56JFizR48GBdc801kiSn06nt27erefPmRXwV1nSqd955R2+//Xae4+3bt9fUqVNVo0aNM35g9/T0zPOteo5evXrp008/lZeXl55//nk5HA717NlTr776qtLT03O/oW/QoIE8PT21aNEiRURESLI+nK9YsaJAe3H4+Pjol19+0SWXXKL+/fvrzz//VEBAwFnPv/TSS3XppZfqjjvuUNOmTbVhwwY1a9ZMWVlZWrZsWe5UqKNHj2rbtm1nfG9DQkK0cePGPMfWrl2bJwCc6f35r2bNmmnRokV5ji1atEiNGzeWm1vRgm9JYSoUAABAGWjVqpVGjRqld955J8/xhx56SIsXL9add96ptWvXKioqSjNnzsyzePuCCy7Qe++9pzVr1mjlypW69dZbT/tGOj+NGjXS7NmztXjxYm3ZskW33HKLDh48WKzX4e3trWeeeea01zFq1ChVr15dgwcP1oIFCxQTE6N58+bp7rvvzl24Xq9ePa1fv17btm3TkSNHcr+x7927tzZv3qxNmzape/fuuccmT56s8847L3f0wc/PT7fddpseeOAB/f7779q8ebPGjh2r1NRU3XjjjQWq38/PT7/++qvc3d01YMAAJScn53vexIkT9fnnn2vjxo3auXOnvv76a/n4+CgiIkKNGjXS4MGDNXbsWC1cuFDr1q3TNddco7CwMA0ePDjf611wwQVauXKlvvzyS0VFRempp546LWjUq1dPy5YtU2xsrI4cOZLvCMP999+vv/76S88++6y2b9+uSZMm6b333ivSqE5JI1gAAACUkQkTJpz2YbF169aaP3++tm/frh49eqhdu3Z68sknVbt27dxzXn/9dYWHh6tHjx4aOXKkxo8fL19f33M+3+OPP6727durf//+6t27t0JDQ0tkg7rRo0crMjIyzzFfX1/9888/qlu3rq644go1a9ZMN954o9LS0nJHMMaOHasmTZrovPPOU0hISO43761atVJwcLDatm0rf39/SVawyM7Ozl1fkeOll17S0KFDde2116p9+/basWOH/vjjD1WpUqXA9fv7+2vWrFkyTVMDBw7M09o3R3BwsD799FN169ZNrVu31pw5c/Tzzz+rWrVqkqyF6R06dNCgQYPUpUsXmaap33777YyBr3///nriiSf04IMPqmPHjkpKStJ1112X55zx48fLzc1NzZs3V0hISL5rYdq3b69p06bp22+/VcuWLfXkk09qwoQJp02xs4NhFrZvWjmTmJiooKAgJSQknHWeHAAAcD1paWmKiYlR/fr1C9UdCUDBne3vWWE+azNiAQAAAKDYCBYAAAAAio1gAQAAAKDYCBYAAAAAio1gAQAAAKDYCBYAAAAAio1gAQAAAKDYCBYlIC0zWwuiDttdBgAAAGAbgkUxxadm6LL3Fur6L1Zo3Z54u8sBAAAAbEGwKKYgHw81rOGvLKepu79do+T0LLtLAgAAKBHz5s2TYRiKj48v1nViY2NlGIbWrl1bInWhfCJYFJNhGHrx8tYKC/bRrqOpenLGRrtLAgAANjMM46w/Tz/9tN0llpoxY8ZoyJAheY6Fh4dr//79atmypT1FoUwQLEpAkK+H3h7eVg5Dmr5mn6av3mt3SQAAwEb79+/P/XnrrbcUGBiY59j48eNzzzVNU1lZFXvGg5ubm0JDQ+Xu7m53KShFBIsScl69qhrXt7Ek6amZm3QgIc3migAAgF1CQ0Nzf4KCgmQYRu7trVu3KiAgQLNmzVKHDh3k5eWlhQsX5vtN/7hx49S7d+/c206nUy+++KLq168vHx8ftWnTRt9///1Za/nggw/UqFEjeXt7q2bNmho2bFjufenp6br77rtVo0YNeXt7q3v37lqxYsUZr/X000+rbdu2eY699dZbqlevXu79kyZN0syZM3NHZ+bNm5fvVKj58+erU6dO8vLyUq1atfTwww/nCVi9e/fW3XffrQcffFBVq1ZVaGhohR7pqQiIjSXojj4N9ffWQ1q7J16Pz9igT687T4Zh2F0WAAAVi2lKman2PLeHr1RC/21/+OGH9dprrykyMlJVqlQp0GNefPFFff311/roo4/UqFEj/fPPP7rmmmsUEhKiXr16nXb+ypUrdffdd+urr75S165ddezYMS1YsCD3/gcffFA//PCDJk2apIiICL3yyivq37+/duzYoapVqxb6NY0fP15btmxRYmKivvjiC0lS1apVFRcXl+e8ffv26ZJLLtGYMWP05ZdfauvWrRo7dqy8vb3zhIdJkybpvvvu07Jly7RkyRKNGTNG3bp1U79+/QpdG0ofwaIEuTkMvTKstQa+s0BzthzSz+v367I2te0uCwCAiiUzVXrBpv++PhonefqVyKUmTJhQqA/I6enpeuGFFzRnzhx16dJFkhQZGamFCxfq448/zjdY7N69W35+fho0aJACAgIUERGhdu3aSZJSUlL04YcfauLEiRowYIAk6dNPP9Xs2bP1+eef64EHHij0a/L395ePj4/S09MVGhp6xvM++OADhYeH67333pNhGGratKni4uL00EMP6cknn5TDYU2qad26tZ566ilJUqNGjfTee+/pr7/+IliUU0yFKmGNawbozj6NJElP/7RJR5PTba4IAACUR+edd16hzt+xY4dSU1PVr18/+fv75/58+eWXio6Ozvcx/fr1U0REhCIjI3Xttddq8uTJSk21Rnuio6OVmZmpbt265Z7v4eGhTp06acuWLUV/YQWwZcsWdenSJc/Mjm7duik5OVl7955cq9q6des8j6tVq5YOHTpUqrWh6BixKAW39W6gWRv3a+uBJL01J0rPDqEDAgAAJcbD1xo5sOu5S4ifX96RD4fDIdM08xzLzMzM/f/JycmSpF9//VVhYWF5zvPy8sr3OQICArR69WrNmzdPf/75p5588kk9/fTTZ11HcTbnqrGkeXh45LltGIacTmepPR+KhxGLUuDp7tDTl7WQJE1ZvluxR1JsrggAgArEMKzpSHb8lOLayZCQEO3fvz/Psf8udm7evLm8vLy0e/duNWzYMM9PeHj4Ga/r7u6uvn376pVXXtH69esVGxurv//+Ww0aNJCnp6cWLVqUe25mZqZWrFih5s2bn7HGAwcO5AkXp+5N4enpqezs7LO+1mbNmmnJkiV5rrNo0SIFBASoTp06Z30syi+CRSk5P7KaejcJUZbT1Buzt9tdDgAAKOcuuOACrVy5Ul9++aWioqL01FNPaePGk/tjBQQEaPz48br33ns1adIkRUdHa/Xq1Xr33Xc1adKkfK/5yy+/6J133tHatWu1a9cuffnll3I6nWrSpIn8/Px022236YEHHtDvv/+uzZs3a+zYsUpNTdWNN96Y7/V69+6tw4cP65VXXlF0dLTef/99zZo1K8859erV0/r167Vt2zYdOXIk3xGN22+/XXv27NFdd92lrVu3aubMmXrqqad033335a6vgOvhN1eKHujfRJL007o4bdyXYHM1AACgPOvfv7+eeOIJPfjgg+rYsaOSkpJ03XXX5Tnn2Wef1RNPPKEXX3xRzZo108UXX6xff/1V9evXz/eawcHBmj59ui644AI1a9ZMH330kaZMmaIWLayZFS+99JKGDh2qa6+9Vu3bt9eOHTv0xx9/nLFLVbNmzfTBBx/o/fffV5s2bbR8+fI8e3JI0tixY9WkSROdd955CgkJyTMikiMsLEy//fabli9frjZt2ujWW2/VjTfeqMcff7wobx3KCcM8daKci0lMTFRQUJASEhIUGBhodzmnuXvKGv20Lk49G4foyxs62V0OAAAuJS0tTTExMapfv768vb3tLgeokM7296wwn7UZsShl91/UWO4OQ/9sP6z1e+PtLgcAAAAoFQSLUhZRzU+X/ruXxacLYmyuBgAAACgdBIsycFMPa97jbxv2a1/8CZurAQAAAEoewaIMtKgdpK4NqinbaeqLhYxaAAAAoOIhWJSRsT0iJUnfrtijxLTS20gGAICKyMV7zQDlWkn9/SJYlJFejUPUsIa/ktOzNHX5HrvLAQDAJeTsvJyammpzJUDFlfP369SdzgvLvSSKwbk5HIZu6l5fD0/foK+W7tKN3evL4Si93TsBAKgI3NzcFBwcrEOHDkmSfH19ZZTi7tdAZWKaplJTU3Xo0CEFBwfLzc2tWNcjWJShwW3D9MJvW7T7WKr+iTqs3k1q2F0SAADlXmhoqCTlhgsAJSs4ODj371lxECzKkI+nm4Z1CNf/FsXo66W7CBYAABSAYRiqVauWatSoocxM1ikCJcnDw6PYIxU5CBZlbNT5dfW/RTH6e+sh7Ys/obBgH7tLAgDAJbi5uZXYByAAJY/F22WsQYi/ujaoJqcpTVm22+5yAAAAgBJBsLDBtedHSJK+XbFbGVlOm6sBAAAAio9gYYO+zWuqRoCXjiRn6I9NB+wuBwAAACg2goUNPNwcGt6priTp66W7bK4GAAAAKD6ChU1GdAqXm8PQsphj2n4wye5yAAAAgGIhWNikVpCP+jaz2s1OZtQCAAAALo5gYaNr/l3EPX31PqWkZ9lcDQAAAFB0BAsbdWtQXfWr+ykpPUsz18bZXQ4AAABQZAQLGzkchkZ1PrmI2zRNmysCAAAAioZgYbNhHerIy92hzfsTtWZPvN3lAAAAAEVCsLBZsK+nLm1TW5L09RIWcQMAAMA1ESzKgZxF3L9s2K/jKRk2VwMAAAAUHsGiHGhTJ0itwoKUkeXUd6v22F0OAAAAUGgEi3LAMAxdc761iHvyst1yOlnEDQAAANdCsCgnLm1TWwHe7tp1NFX/RB22uxwAAACgUAgW5YSvp7uu7BAuSfpgXjStZwEAAOBSCBblyM09I+Xp7tDymGNaEn3U7nIAAACAAiNYlCOhQd4a2claa/HmnO2MWgAAAMBlECzKmdt6N5Cnu0MrYo9rMaMWAAAAcBEEi3KmZuB/Ri1mM2oBAAAA10CwKIdu791AXu4Ordx1XL9u2G93OQAAAMA5ESzKoRqB3rqtdwNJ0oSfNyspLdPmigAAAICzI1iUU7f2aqB61Xx1KCldb86OsrscAAAA4KwIFuWUt4ebJgxuKUmauDhGm+ISbK4IAAAAODOCRTnWs3GIBrauJacpPfj9eqVnZdtdEgAAAJAvgkU599Sg5qri66FNcYl6/c/tdpcDAAAA5ItgUc7VCPTWy0NbS5I++WenFkYdsbkiAAAA4HQECxdwUYtQjexs7W1x37S1OpaSYXNFAAAAQF4ECxfxxMDmahDip0NJ6Xroh/VsnAcAAIByhWDhInw83fT28HbycDM0e/NBfbN8t90lAQAAALkIFi6kZViQHuzfVJL07C+bteNQks0VAQAAABaChYu5sXt99WhUXWmZTt09ZS0taAEAAFAuECxcjMNh6LUr26iKr4c276cFLQAAAMoHgoULqhnorVeGtZFEC1oAAACUD6UaLP755x9deumlql27tgzD0IwZM/Lcb5qmnnzySdWqVUs+Pj7q27evoqKiSrOkCqNf85oaRQtaAAAAlBOlGixSUlLUpk0bvf/++/ne/8orr+idd97RRx99pGXLlsnPz0/9+/dXWlpaaZZVYTw+sLka1vDXoaR0vfjbFrvLAQAAQCVmmGW0IYJhGPrxxx81ZMgQSdZoRe3atXX//fdr/PjxkqSEhATVrFlTEydO1PDhwwt03cTERAUFBSkhIUGBgYGlVX65tXr3cV3xwWIZhvTb3T3UrFblew8AAABQOgrzWdu2NRYxMTE6cOCA+vbtm3ssKChInTt31pIlS874uPT0dCUmJub5qcza162iQa1ryTSlFxi1AAAAgE1sCxYHDhyQJNWsWTPP8Zo1a+bel58XX3xRQUFBuT/h4eGlWqcreOjipvJ0c2hB1BHN23bI7nIAAABQCblcV6hHHnlECQkJuT979uyxuyTbhVf11eiuEZKsUYtsZ5nMbgMAAABy2RYsQkNDJUkHDx7Mc/zgwYO59+XHy8tLgYGBeX4g3dmnkYJ8PLT9YLL+3HTmER8AAACgNNgWLOrXr6/Q0FD99ddfuccSExO1bNkydenSxa6yXFaQr4dGd7FGLT6aH60yWpMPAAAASCrlYJGcnKy1a9dq7dq1kqwF22vXrtXu3btlGIbGjRun5557Tj/99JM2bNig6667TrVr187tHIXCua5rPXm5O7Rub4KWxRyzuxwAAABUIu6lefGVK1eqT58+ubfvu+8+SdLo0aM1ceJEPfjgg0pJSdHNN9+s+Ph4de/eXb///ru8vb1Ls6wKq7q/l648r46+XrpbH8+P1vmR1ewuCQAAAJVEme1jUVoq+z4Wp4o9kqI+r8+TaUp/jOupJqEBdpcEAAAAF+US+1igdNSr7qcBLa3F758u2GlzNQAAAKgsCBYV0E09IiVJP62L0/GUDJurAQAAQGVAsKiA2oUHq0XtQGVkOfX9qr12lwMAAIBKgGBRARmGoVGdrdaz3yzfLScb5gEAAKCUESwqqMFta8vfy10xR1K0OPqo3eUAAACggiNYVFB+Xu66on2YJOnrpbtsrgYAAAAVHcGiArvmfGs61OwtB3UgIc3magAAAFCRESwqsMY1A9SpXlVlO019u2K33eUAAACgAiNYVHCjzq8rSfp2+R5lZTttrgYAAAAVFcGigru4Zaiq+XnqQGKa/tp6yO5yAAAAUEERLCo4L3c3XXleuCQWcQMAAKD0ECwqgVGd68owpAVRRxR7JMXucgAAAFABESwqgfCqvurVOESStWEeAAAAUNIIFpXENf/uxP3dyj1Ky8y2uRoAAABUNASLSqJP0xqqHeSt46mZmrVxv93lAAAAoIIhWFQSbg5DIzpZrWe/Xsp0KAAAAJQsgkUlcnWncLk7DK3adVxb9ifaXQ4AAAAqEIJFJVIjwFv9W4RKovUsAAAAShbBopLJ2Yl7xpp9Sk7PsrkaAAAAVBQEi0qmS2Q1RYb4KSUjWz+u3mt3OQAAAKggCBaVjGEYuu58q/XsJwt2KivbaXNFAAAAqAgIFpXQ1R3rqpqfp/YcO6Gf1sXZXQ4AAAAqAIJFJeTj6aabekRKkt6fu0PZTtPmigAAAODqCBaV1DXn11WQj4eiD6fo940H7C4HAAAALo5gUUkFeHtoTNd6kqR3/46SaTJqAQAAgKIjWFRi13erJz9PN209kKSZa1lrAQAAgKIjWFRiwb6eur1PQ0nSC79tYV8LAAAAFBnBopK7sXt9RVTz1aGkdL0/d4fd5QAAAMBFESwqOW8PNz0+sLkk6fMFMYo5kmJzRQAAAHBFBAuob7Ma6tk4RBnZTj05cyMLuQEAAFBoBAvIMAw9dWlzebk7tCDqiL5cssvukgAAAOBiCBaQJDUI8dcjA5pKshZy7ziUZHNFAAAAcCUEC+S6rks99WwcovQsp+75dq0yspx2lwQAAAAXQbBALofD0KvDWquKr4c2xSXq5d+32l0SAAAAXATBAnnUDPTWK8PaSJI+Xxij3zcesLkiAAAAuAKCBU7Tr3lNje1RX5L0wPfrtPtoqs0VAQAAoLwjWCBfD17cVO3rBispLUt3fLOa9RYAAAA4K4IF8uXh5tB7I9sr2NdDG/Yl6N2/o+wuCQAAAOUYwQJnVDvYRy9c3kqS9P7cHVq167jNFQEAAKC8IljgrC5pVUuXtwuT05Tum7ZWKelZdpcEAACAcohggXN6+rIWqh3krV1HU/XqH9vsLgcAAADlEMEC5xTk46GXhraWJH21dJeiDrIrNwAAAPIiWKBAejYOUb/mNZXtNPXsr1tkmqbdJQEAAKAcIVigwB67pJk83Az9s/2w5m47ZHc5AAAAKEcIFiiwetX9dEM3a+O8537Zwt4WAAAAyEWwQKHceUFDVff31M4jKZq5dp/d5QAAAKCcIFigUAK8PTS2R6Qk6cP50cp2stYCAAAABAsUwajzIxTo7a6dh1P056YDdpcDAACAcoBggULz93LX6K71JEkfzIumQxQAAAAIFiia67vVl4+HmzbsS9DCHUfsLgcAAAA2I1igSKr6eWp4p3BJ0kfzo22uBgAAAHYjWKDIbuoRKYchLdpxVDsOsRs3AABAZUawQJGFBfvowmY1JUlfL91tczUAAACwE8ECxXLt+RGSpB9W7VVKepbN1QAAAMAuBAsUS/eG1VW/up+S0rM0gw3zAAAAKi2CBYrF4TA0qnNdSdJXS3bRehYAAKCSIlig2K7sEC5vD4e2HkjSyl3H7S4HAAAANiBYoNiCfD10WZvakqRvlrGIGwAAoDIiWKBEjOxsLeL+dcN+HU/JsLkaAAAAlDWCBUpEmzpBalE7UBlZTv2weq/d5QAAAKCMESxQIgzD0Mh/F3F/s3w3i7gBAAAqGYIFSszgtmHy83TTzsMpWrrzmN3lAAAAoAwRLFBi/L3cdVnbMEnS5GW7bK4GAAAAZYlggRKVs6fFH5sO6Ehyus3VAAAAoKwQLFCiWoYFqU2dIGVmm/p+FYu4AQAAKguCBUpcziLuKct3y+lkETcAAEBlQLBAibu0TW0FeLlr19FULY4+anc5AAAAKAMEC5Q4X093DWnHIm4AAIDKhGCBUpEzHWr25oM6lJRmczUAAAAobQQLlIpmtQLVvm6wspympi7fY3c5AAAAKGUEC5Saa7tESJImLdmltMxsm6sBAABAaSJYoNQMal1btYO8dSQ5XdNX77O7HAAAAJQiggVKjYebQzf2iJQkffJPtLJpPQsAAFBhESxQqoZ3DFeQj4dij6bqj00H7C4HAAAApYRggVLl5+Wu0f+utfhofrRMk1ELAACAiohggVI3ums9eXs4tH5vguZuO2R3OQAAACgFBAuUumr+XhrdpZ4k6YXftior22lvQQAAAChxBAuUidv7NFQVXw/tOJSsb1ewrwUAAEBFQ7BAmQjy8dA9FzaSJL05e7uS0jJtrggAAAAliWCBMjPq/AhFVvfT0ZQMfTAv2u5yAAAAUIIIFigzHm4OPTygqSTp0392alNcgs0VAQAAoKQQLFCm+jWvqYtbhCrLaer+aeuUkcVCbgAAgIqAYIEyZRiGnru8par6eWrrgSS9+3eU3SUBAACgBBAsUOaq+3vpuSEtJUkfzIvW2j3x9hYEAACAYiNYwBaXtKqly9rUVrbT1F1TVivhBF2iAAAAXBnBArZ5dkhLhVf10Z5jJ/TwD+tlmqbdJQEAAKCICBawTZCPh94b0V4eboZmbTygr5busrskAAAAFBHBArZqEx6shwc0kyQ998sWbdmfaHNFAAAAKAqCBWx3Q7d6urBpDWVkOzXu27VKy8y2uyQAAAAUEsECtjMMQy8Pa63q/p7adjBJr/6xze6SAAAAUEgEC5QL1f299Mqw1pKkzxfGaGHUEZsrAgAAQGEQLFBuXNC0pq45v64k6bEZG5gSBQAA4EIIFihXHh7QTDUCvLTraKo+XxhjdzkAAAAoIIIFyhV/L3c9NtDqEvXe3zsUF3/C5ooAAABQEAQLlDuXtamtTvWq6kRmtp7/bYvd5QAAAKAACBYodwzD0NOXtZDDkH5dv18rY4/ZXRIAAADOgWCBcql57UBddV64JOmdv3fYXA0AAADOhWCBcuv23g3l5jD0z/bDWrcn3u5yAAAAcBYEC5Rbdav5anDb2pKkdxm1AAAAKNcIFijX7ujTUIYhzdlyUJvjEu0uBwAAAGdAsEC51iDEXwNb1ZIkvT+XUQsAAIDyimCBcu/OCxpKkmZt3M++FgAAAOUUwQLlXtPQQHWJrCanKX2zbLfd5QAAACAfBAu4hNFdIyRJU5bvVnpWts3VAAAA4FQEC7iEvs1qqlaQt46mZOi3DfvtLgcAAACnIFjAJbi7OTSqc11J0qTFu2yuBgAAAKciWMBlDO9UV55uDq3dE6/1e+PtLgcAAAD/QbCAy6ju76VLWoVKYhE3AABAeUOwgEsZdb61iPundXFKSsu0uRoAAADkIFjApZwXUUUNa/grNSNbP62Ls7scAAAA/ItgAZdiGIaGdwyXZLWeBQAAQPlAsIDLGdq+jjzdHNq4L1Eb9ibYXQ4AAABEsIALquLnqQE5i7gZtQAAACgXCBZwSSM6WXta/LR2n5LTs2yuBgAAAAQLuKTO9asqsrqfUjKy9TOLuAEAAGxHsIBLMgxDwzuxiBsAAKC8IFjAZQ1tX0cebobW703Qxn0s4gYAALATwQIuq5q/l/q3sBZxM2oBAABgL4IFXNrIfxdxz1wbp9QMFnEDAADYxfZg8fTTT8swjDw/TZs2tbssuIjzI6upXjVfJadn6Zd1++0uBwAAoNKyPVhIUosWLbR///7cn4ULF9pdElyEw2Fo+L+jFhMXx8o0TZsrAgAAqJzKRbBwd3dXaGho7k/16tXtLgku5OrzwuXt4dDm/YlasvOo3eUAAABUSuUiWERFRal27dqKjIzUqFGjtHv3mRfipqenKzExMc8PKrcqfp4a1qGOJOnzBTE2VwMAAFA52R4sOnfurIkTJ+r333/Xhx9+qJiYGPXo0UNJSUn5nv/iiy8qKCgo9yc8PLyMK0Z5dEO3+jIM6a+th7TjULLd5QAAAFQ6hlnOJqXHx8crIiJCb7zxhm688cbT7k9PT1d6enru7cTERIWHhyshIUGBgYFlWSrKmZsmrdScLQc1snNdvXB5K7vLAQAAcHmJiYkKCgoq0Gdt20csThUcHKzGjRtrx44d+d7v5eWlwMDAPD+AJN3Uo74k6YdVe3U0Of0cZwMAAKAklbtgkZycrOjoaNWqVcvuUuBiOtevqtZ1gpSe5dRH86PtLgcAAKBSsT1YjB8/XvPnz1dsbKwWL16syy+/XG5ubhoxYoTdpcHFGIahe/s1liRNWrJLcfEnbK4IAACg8rA9WOzdu1cjRoxQkyZNdNVVV6latWpaunSpQkJC7C4NLqh34xB1rl9VGVlOvTVnu93lAAAAVBrlbvF2YRVmQQkqh1W7jmvoh4vlMKQ/7+2phjUC7C4JAADAJbn04m2guDpEVFG/5jXlNKWXf99mdzkAAACVAsECFdID/ZvIzWFo9uaD+nPTAbvLAQAAqPAIFqiQGtcM0NgekZKkJ2ZuVGJaps0VAQAAVGwEC1RY4/o2Uv3qfjqYmK6XZm21uxwAAIAKjWCBCsvbw00vXmHtwP3Nst1aEn3U5ooAAAAqLoIFKrTzI6tpRKe6kqT7p61VQipTogAAAEoDwQIV3uMDm6leNV/FJaTp0R83yMU7LAMAAJRLBAtUeH5e7np7eDu5Owz9umG/vlu11+6SAAAAKhyCBSqFNuHBuu+ixpKkp3/apJ2Hk22uCAAAoGIhWKDSuKVnA3WJrKbUjGzd8+1aZWQ57S4JAACgwiBYoNJwcxh64+o2CvLx0IZ9CXpj9na7SwIAAKgwCBaoVGoF+ejloVYL2o//idaiHUdsrggAAKBiIFig0rm4ZS2N6BQu05Qenr5eJzKy7S4JAADA5REsUCk9PrC5agV5a8+xE/pg3g67ywEAAHB5BAtUSn5e7nrq0uaSpI/mRyuaLlEAAADFQrBApdW/Raj6NAlRZrapJ2duZOM8AACAYiBYoNIyDEPPXNZSXu4OLdpxVH9sOmh3SQAAAC6LYIFKrW41X43tESlJemvOdjmdjFoAAAAUBcECld5NPeorwMtdWw8k6fdNB+wuBwAAwCURLFDpBft66vru9SUxagEAAFBUBAtA0o3d6yvA213bDybr1w377S4HAADA5RAsAElBPh668d9Ri3f+iqJDFAAAQCERLIB/3dC9vvw83RR1KFkLdxyxuxwAAACXQrAA/hXo7aErzwuXJE1cFGtvMQAAAC6GYAH8x3VdIiRJf287pNgjKTZXAwAA4DoIFsB/RIb4q0+TEJmmNGlJrN3lAAAAuAyCBXCKMd2sRdzfrdyr5PQsm6sBAABwDQQL4BQ9GlZXZIifktOz9MOqvXaXAwAA4BIIFsApHA5Do7vUkyR9s2w3rWcBAAAKgGAB5GNIuzB5uTu07WCS1uyJt7scAACAco9gAeQjyMdDA1vXkiRNWbbb5moAAADKP4IFcAYjO9WVJP2yfr8S0zJtrgYAAKB8I1gAZ9Ahoooa1vDXicxszVwbZ3c5AAAA5RrBAjgDwzA04t9Riyks4gYAADgrggVwFle0C5Onm0Ob9ydqw74Eu8sBAAAotwgWwFlU8fPUgFahkqQpy/fYXA0AAED5RbAAzmF4R2s61E9r9ymFnbgBAADyRbAAzuH8yKqqX91PKRnZ+nkdi7gBAADyQ7AAzsEwDA3vGC5JmrKcPS0AAADyQ7AACmBohzrycDO0bm+CNsWxiBsAAOBUBAugAKr7e+mi5jmLuBm1AAAAOBXBAiigkZ2tRdzTV+9Twgl24gYAAPgvggVQQF0bVFPjmv5KzcjWdytpPQsAAPBfBAuggAzD0PXd6kuSJi6OVbaTnbgBAAByECyAQhjSNkzBvh7ae/yEZm8+aHc5AAAA5QbBAigEH083jexkrbX4YlGMzdUAAACUHwQLoJCu7RIhN4ehZTHHtHEfrWcBAAAkggVQaLWCfDSodS1J0tt/RdlcDQAAQPlAsACK4O4LG8lhSLM3H9S6PfF2lwMAAGA7ggVQBA1C/DWkXZgk6Y3Z222uBgAAwH4EC6CI7rmwkdwchuZvP6xVu47ZXQ4AAICtCBZAEUVU89OVHepIkl79Y5tMk30tAABA5UWwAIrhrgsbydPdoaU7j+mndXF2lwMAAGAbggVQDGHBPrqrT0NJ0rO/bFZCaqbNFQEAANiDYAEU0829ItWwhr+OJGfo5T+22l0OAACALQgWQDF5ubvp+SEtJUnfLNutlbEs5AYAAJUPwQIoAZ0jq+nq88IlSfdOW6vENKZEAQCAyoVgAZSQxwY1U50qPtpz7IQe+3EjXaIAAEClQrAASkigt4feGdFObg5DP6+L0/er9tpdEgAAQJkhWAAlqH3dKrqvX2NJ0lM/bVL04WSbKwIAACgbBAughN3aq4G6Nqim1Ixs3T1ljdKzsu0uCQAAoNQRLIAS5uYw9ObVbVXF10Ob4hL18qxtdpcEAABQ6ggWQCmoGeit165sI0n636IY/b31oM0VAQAAlC6CBVBKLmxWU2O61pMkPfTDBiWcoAUtAACouAgWQCl6eEBTRVb30+GkdL00i125AQBAxUWwAEqRt4ebXryilSRpyvLdWrrzqM0VAQAAlA6CBVDKOkdW04hOdSVJj07foLRMukQBAICKh2ABlIGHBzRVjQAv7TySov8tirG7HAAAgBJHsADKQJCPhx4e0FSS9NG8aCWkspAbAABULAQLoIwMbhumxjX9lZiWpY//iba7HAAAgBJFsADKiJvD0PiLmkiSvlgUq0NJaTZXBAAAUHIIFkAZ6te8ptrVDdaJzGy99/cOu8sBAAAoMQQLoAwZhqEH+lujFlOW79ahREYtAABAxUCwAMpY1wbV1SGiijKzTX21dJfd5QAAAJQIggVgg5u615ckfb10l05ksK8FAABwfQQLwAYXtQhVeFUfHU/N1PQ1e+0uBwAAoNgIFoAN3ByGru9qjVp8vjBGTqdpc0UAAADFQ7AAbHJVx3AFeLlr5+EUzdt+yO5yAAAAioVgAdjE38tdwzuFS5ImLmYRNwAAcG0EC8BG155fT5L0z/bD2n001d5iAAAAioFgAdiobjVf9WwcIkmavJxRCwAA4LoIFoDNrulcV5L03cq9Ss+i9SwAAHBNBAvAZhc0raFaQd46lpKh3zcesLscAACAIiFYADZzd3NoeEdr1GLy0t02VwMAAFA0BAugHLi6Y7jcHIaWxx7TtgNJdpcDAABQaAQLoBwIDfJWv2Y1JUnfLGMRNwAAcD0EC6CcGHW+NR1q+up9SknPsrkaAACAwiFYAOVEtwbVVa+ar5LSs/Tzuji7ywEAACgUggVQTjgchkb+23r262W7ZJqmzRUBAAAUHMECKEeGdQiXp7tDG/clav3eBLvLAQAAKDCCBVCOVPXz1MBWtSRJXy9lETcAAHAdBAugnLnm30XcP6+PU0Jqps3VAAAAFAzBAihn2tetoqahAUrLdOqH1XvtLgcAAKBACBZAOWMYhkadHyFJmswibgAA4CLc7S4AqHQy06QTxyTvIMnTL99ThrStrRd/26LowylauvOYujSoVrBrpydJ676Vts2Skg5IyQet52nQR2pwodTwQsndqwRfjKTsLCnlkOTuLflWLdlrAwAAl0GwAEqbaUp7lklLP5R2/CVlJFnHHR5S3fOlhn2ltiMl/xq5Dwnw9tCQdmH6ZtluTV6269zBIvWY9M9r0pqvpPTEU+47Ih2LllZ8JgXXlS58SmpxheQoxoDlkShp+afS1l+lpDjJdFrHa7aSIntJ7a+TQpoU/foAAMDlGKaLz7NITExUUFCQEhISFBgYaHc5QF57V0q/jZfi1uQ9bjhOfhiXJA8/qcsdUtc7rREGSZviEjTwnYXycDO0+OELFRKQz0iDM1ta9YX093PSiePWsWqNpPOul0KaWmElfo8U/Ze0+SdrZEGSarWVBr4h1elQuNcTt1b6a4J1vTyvx00ys/PePu96qfejkl8BR1sAAEC5U5jP2gQLVG5Z6dLmmVLsAiktwfoJrGNNGWrQR/KpUrTrZqRKc5+Xln5gBQh3b6n1VVKH66WqkVZ4OLbTGsFY983J4OFTVepxn9RxrOThrcs/WKQ1u+N11wUNdf9Fp4wA7FoizXpAOrDBul2jhdTvGWvKU36jERkpVj0L3/531MSQOt4oXfCE5BN89tcTv8d6Peu+lWRawajxxdbrqdVa8guxRk1i5ksbvpe2z7Ie5xUkDXhJajNCMoyivZeHt0tbfpKOx0oJe6zQEtFFqtdDCjtPcmPgFQCA0kKwAM4lPVla/K608nMp5XD+5xhuUssrpO73SjVbFPzaMQukn+6SjsdYt1sPl/o/L/lVz/9805S2/Cz9/ax0ZLt1LDBMOv82zfXooet/2KcAL3cteKiPgn08pH2rpGUfSxumWed6B0l9HpfOu6FgH7KTD0uzn5DWTbFuewVJnW6SOt8m+YfkPfdIlLToLWndVMn5b+vbVldJFzwmVal3lvfgH+mPR0+GniYDpUvfyjPd66yc2dZ7suIzK/SdSfXGUv8XpEb9CnZdAABQKAQL4Gz2rpKm32SNGEhSQC2pzXDrw7ynv3RwozWScHjLycc0vtgKGHXPP/N1U45a3+qv/Ny6HRgmDXpLanxRwerKzpLWfyvNfVFKtNrMmoZDmx1NFJfhq3ohgWqUFZV7n2RYaxkufPLMoeVsYv6Rfnvw5Ot0eFgf1EMaS9mZ1rSnxP+0u63fU+r7tBRWwOlT2VnS4ret1+PMtAJQ70ekjjdJbh75P8aZLW2eIc1/RTq89d+X6ZAa9rOeNzjcGnmJXSjtnGuNMElSo4ukQW9KQXUK/z4AAIAzIlgA+cnOkha+Ic17yVoPEBgm9ZsgNR+c/wfd/eukhW9Km2ZI+vevSd2uVgiJ6CpVayilxVtTdFZ/Ja39Rso6YZ3X4Xrr2t5F+DOZmSatnSytn2ot+j6Vp7/UuL/U5U4prH3hr/9fTqe07Tfrfdm3Kp8TDCtU9bhfCu9YtOc4sEGacbt0YL11u3pjqd21VhgIaWItNk/YJ22abk21SthjnecdJHW6WeowJv/AkJZgBZBlH1vBxaeKNPh9qenAotUJAABOQ7CAa8vporTyf9LeFVLmCSkrzVqb0LCfNQJQu33h5uwfi5F+vOXkB/UWV0iD3ijYGoqj0dZ0oLVTTk4HkiSHu+TMyntuaGvpoueszkgl4ViMnLuX6p0/NupYYpLat2qlIUOvkTx8Sub6OUxTit9lrWc4ss0aJajVxno9RQlHp3JmWx2r/nrW6lKV49RF7JLkHWwtZO98S+5C9rM6skOaPlaKW23d7niTFerO0Mo3X9mZUtSf1nqbI1HWaJYzywpu4Z2lFpcXbjocAAAVBMECrivmH2nWw9KhTWc/L7SVdP4dUsuhkrvnmc/LzpRWfG51TcpIkrwCpUtesxZSF3YxcWKctGqSNed/70opO9067ltNqtPJ+jBcr3vRFymfxe8b9+vWr1fL38tdf9/fSzUCvUv8OcrEiXhrJCbqT2stSs576OFrjQK1HSU1uUTyKOTry8qQ/p5grZuRpCr1pSEfWNc8m8Q4ax3Hmq+tPT/OyJDaX2utZQmoWbjaAABwYQQLuJ7MNKuN6dL3rdvuPlKroVZw8KlqTVXat0qKmm395Ew58guRWl8ttbvGaq+a86H+RLzVEnXuC9LRHdaxul2lyz+SqkQUv96sdGsDOv8aJT96kA+n09TlHy7Wuj3xGty2tt4e3q7Un7PUZaRa05l8gkvuPYz+W5p5p5S4T5JhTYvqeKNUv/fJTlkZKVLsImvx+6YfT446+VaX2o6wRiiqRlrH9q6w/rxt/cW67RkgDXzNmg4HAEAlQLCAazmyQ5p2rXRos3W7wxhrkfCZpimlHpNWTZSWfyIl7T953DPAWtwrSYe2KHddhG91qc+j1nUdbqXyEsrChr0Juuz9hTJN6ZuxndW1QREWbFcGaQlWR6o1X5885lPVGlly97YWhf93SltEN2stR5NLzjz6tXup9PsjJ6dbtb9OGvBKmYRKAADsRLCA69j6q/TjrdYCXr8a0uD3rIXJBZGdKe2YY32A3P776esdqjaw5sZ3u6dk1gmUA0/M2Kivlu5SgxA/zbqnpzzdi7F7dkV3aIs1DW7dtyd3O88RVNfaq6TDaKl2AUd/nNnSgtetUTCZUs2W0pWTpOoNi16jaVo/xdkFHQCAUkSwQOnISLH2Flj7jTW6kPNHp0Yzq8NPkwFS9UYFvFaqte4hZ+pT3S7Wh7Sizl/PPGFt4paw25pvH9ahQs6FT0jN1IVvzNOR5AyNv6ix7ryggO93ZZaRYk2HS0+WMpKtbl5VI4u+FmbnPOmHm6z9Tzz9pcvesabsFYTTKe1aaHUaO7jJWiifnizVaGotlG9yiTV9qxTW6QAAUBQEC5Qsp1Na9pH1Te2p3/yeqk4na6O2FkPOPE0kZoH0890n95HofKvVSelMexsgjx/X7NW9U9fJ3WFoxh3d1DKsAJ2TULKSDkjf32iFBElqPkS64PEzB+vju6wNCdd+Y3XfOps6Ha2/D2fbMwUAgDJCsEDJOb5LmnnHyd2Pq9ST2oy0djp297bmqu9aIkX9YXV0ypmO5OEnNehjnecXYu1ifWiztOG7k2spCruBHCRJpmnq9smrNWvjATUI8dMvd/WQj6frrh1xWdlZ0rwXpAVvSDKt1rktLrfCdc7+HIe2WuEj5p+Tj/MKtM6r39Pa08MrwBq92L3EarGcmWqd1+kWa8d2AjcAwEYEC5SMqNnWt7LpCVZQ6P+c1H7MmeeDJx209ipYNcmaknQmbp5WW9F+zxRsnwKc5nhKhvq/9Y8OJaXrui4RmjC4pd0lVV4HNlo7rm/77ezn1e9ldS9rOkjy9M3/nKQD1sjg6knW7bpdpSsnVshpfQAA10CwQPGYprTkPWn2k9bmZXU6SVd8fLIFZ0Eev3+dtaA6dqG1uZ3ptLo8NR8sNbu0YBvT4az+2X5Y1/1vuSTpizEd1adpDZsrquT2rrLCxeGt1o9XgFSjubWxXrNLpeC6Bb/W1l+l6bdYUw8DaklXfVX0nc8BACgGgkVllZ1lTb/w8LGmKRVlAWhaovTLvdLG763b7a+TLnn97JvQwTbP/LxJXyyKVXV/L/0+roeq+3vZXRJKypEo6duR0pHt1ijfgFek864v2rUy06wdz/1DJTf3kq0TAFChESwqE2e21XJ180zrW860eOu44ZBqtf23y8wl1jen5woa+1ZL398gHY+x1kRc/KLV358ONeVWWma2LntvobYfTFbfZjX16XUdZPD7qjjSk6QZt1nd2CSr+1T/F889NSor3doscMvP1t/rI9slM1tyuEvBEdb6ju73lsxmkQCACo1gUVkc2irNvN3akfpcaraU2oyQml8mBYXnDQsHN0mL3rFGKZxZVo//oZ9JdTuXXu0oMZvjEjXk/UXKyHbqxStaaUSnQky5QflnmtLCN6z2zKZT8gqS+jwitbpS8vvPJonZWVaThY3fW4EiLSHvdQw3K1zkcLhL7a6V+jwm+YeUzWsBALgcgkVF53RKi96U5r0kZWdYXWbajLDWL9TpKGWnSyeOW/32t/5mfXOZnX7y8f6hUq02VveZpAPS0aiT9zUfLF36NmsgXMyn/+zU879tkY+Hm367p4fqV/ezuySUtLg11jTFuDX/HjCsv8f+NaXUo9ZIY+rRk+f7h1rdpyJ7WXtkBNSSkuKkg5ulpR9IO+da5wXUthaI80UCACAfBIuKLC1Rmn6ztH2WdbtRf+nSt6TA2md+zInj0sbp0vqp0t6Veb+1lKxpU80HS13vlsLal1rpKD1Op6lrPl+mxdFH1SY8WN/f2kUebuzmXOE4s6VVX0grJ0oHN5x+f06DhJbDpIiukuMsbYh3LZZ+vseaJuVwly56Xup8C1MfAQB5ECwqqqPR0pQR1m69bl7SoDestq2F+SCQkWp943l4i+QdLPnXkKo1kgJrlVrZKBv7E06o/5v/KDEtS3df0FD3XdTE7pJQmpIOSDvnW13X/KpLfjWk2m0Lt+9FepL0013Sph+t2zRrAACcgmBREe2YYy2sTkuwpi4Mn8zoAk7zy/o43fnNGjkM6YfbuqpdXaa04RxM05oa9efj1hqOej2kq76UfKvaXRkAoBwgWJQXiXHWN4ox/1jTkfxDrHnP9bpJEd0L1vbRNKXF70pznrL+ox/e2eppz4ZZOINx367RjLVxalc3WNNv60qXKBTM9j+tLy8ykqTAMGnIB1Jk74I9NvmQtHuptGeZNbLqEyz5VrPWdrQYIrnTBhkAXBXBwm6JcdIfj56cXpAf32rWplnNh1jfEOYXMmIWWJvUxa22bre7Vhr4Ov+RxlkdSkpT71fnKTUjW++OaKdL25xl/Q3wXwc3S1NHScd2Wrc73Wy1pc1vDdeJeKvF9fpvrX+rdIb/lPjXlDqNlTrfam0aCABwKS4XLN5//329+uqrOnDggNq0aaN3331XnTp1KtBjy1WwcDql5R9bbSEzkiUZUu12VleWoPB/O7fESttmSSeOnXycbzWpbhepeiNrROPIditM5HR/8fCT+j0jdbyJhZUokHf+itIbs7crLNhHf93fS94eZ1nEC/xXRor05xPSys//PWBYIxd1u0gOh7VOK3ah1eb6v40garSwOkvVaG5dI/mg9eVK0n7r/ir1re5TtduW7esBABSLSwWLqVOn6rrrrtNHH32kzp0766233tJ3332nbdu2qUaNGud8fLkJFhkp0o+3nNzIqk5HadCbUmir08/N6Te/eYZ1/n9bRP6Xw13qMEbq9ZC1yBoooBMZ2erz2jwdSEzTwwOa6tZeDewuCa5mx1/SgtelXYvOfE5IU2s/jVZX5r/ZXlaGFS7+flZK2GPtIH7Rc2y8CQAuxKWCRefOndWxY0e99957kiSn06nw8HDdddddevjhh8/5+HIRLOJ3S1NGWu0f3Tyl/i9I591ofbt3LtlZ0u4l0sGN0tEdVqeXag2sucl1z5eC6pR+/aiQvl+1V+O/W6cAL3ctfPgCBfkUolsQkONYjLTheylxr7Xmy3BYjSMi+0jB4QW7xonj0sw7pa2/WLfbXSsNfIPuUwBwLmsmW19WhzS2rQSXCRYZGRny9fXV999/ryFDhuQeHz16tOLj4zVz5szTHpOenq709JObvSUmJio8PNy+YJF6THq/k5RyWPILka6ezEZTKBecTlMXv/2Pth9M1oMXN9HtvRvaXRIqM9OUln4o/fmY1Yiifk+r+xSbcQLA6bKzpNlPWF37qkZKN8+XvO35Ar0wwcLWHbSOHDmi7Oxs1ayZt8NRzZo1deDAgXwf8+KLLyooKCj3Jzy8gN+YlRbfqtZeEqGtpLFzCRUoNxwOI3cK1P8WxiotM/scjwBKkWFIXW6XRnwrefpb3fI+6fOfncQLwTStJhkJ+6z/zUwr+XoBoKjSEqX966Xkw9a/V4V1Il765iorVEhS6+Eu0/yiAP1Oy5dHHnlE9913X+7tnBELW134pLUOwtPX3jqAU1zaprZe/3O79sWf0A+r92pU53zmwQNlqXF/6Ybfrc0+j8dIn/WTLnpW6nTL2aePpidL23+XomZLO+dai8NzePhJzS+T2o60WnkXZBoqAJSkYzHSgtek2EXWv205vIOkmq3+7QR6Wf5d9v5r66/SrIesdWkevtLlH0nNB5du7SXI5aZCnapcrLEAyrH/LYzRhF82q141X/11f2+5OVg0i3Ig9Zi163fOuouqDawRjVZXSl6B1ghHYpy1N8a2WdKWX6TMlJOPNxxWgwtndt7uVBHdrD04qtQr05cDoJJKPSbNf0Va8ZnkzDx53Keqtb7s1Fbc4edb+/s0ucRaR+twszY/jl0orf7S+gJFkoLrWtPra7Uuq1dyRi6zxkKyFm936tRJ7777riRr8XbdunV15513us7ibaAcS83IUteX/lZ8aqbeH9leA1vXsrskwGKa0vJPpbnPWf9hzeHubX1T99+23JI1z7jZZVKDC6zmFu5e1jX2LJPWfiNt+E7KTLWmWl38ktTuGrpPASg9+9dL346SEnZbtxtcIHW509pqwLeqlHnC2hdo53yrE+ieZXkfbzisLQdSj1przyTJ4SF1vUvq+UC5mQnjUsFi6tSpGj16tD7++GN16tRJb731lqZNm6atW7eetvYiPwQL4NzenL1db/8VpQ4RVfTDbV3tLgfIKz1ZWvO1tOyjvFMIDIdUs6U1CtFqmBTW4exB4ViMNOM2q9OeZLXrvuQ1yY2OaABK2KYfpRm3W19mVI20Ot016HP2xyTsk7b8JG2a8W/I+M9H8GoNrT2DOt0shTQpxcILz6WChSS99957uRvktW3bVu+88446dy7YImiCBXBuh5LS1PXFv5XlNDXrnh5qVou/KyiHTNPaEyj1qDWCUTVS8vIv3DWc2dKit6W/Jkgy6T4FoGQ5ndLc5631FJLU4EJp2OeF/zcmO9P6ty75kDVqERRW8rWWEJcLFsVBsAAK5o7Jq/Xrhv0a1bmunr88n40bgYpk2+/SDzdKGcnWrt9Xf5X/hqUAUFBpidL0m6Xts6zbXe+W+j5trZOowAgWAE6zOPqIRn66TH6eblr2WF/5e7lcUzigcA5stLpPJey21m0MetPqHFUQ8butqQ7Rf1stI1OPWvOdI3tb31A27Ct5eJdq+QBKwP710opPpcPbpeQDUnqSVKO5FN5Jqtddqt+rYMFg1xJp5h3SsWjJzUu67F2pzdWlX385QLAAcBrTNNX3jfmKPpyiZ4e01LXn03oWlUDqMWn6WGnHHOt2ZG+p96P57zmUdNBaYLnxh9MXWZ4qOMJav9H4opKuGEBJ2LtK+vtZqz312QTUklpfJbW4QqrV5vR1XIn7pYVvSss/kWRKgWHWCGhYh1IrvbwhWADIV07r2aahAZp1Tw8ZdMxBZeB0Sv+8av3ktIOs3V6q0UwKCrf6xe9fLx3adLIziwzr28zmg6VqDaw50EkHrICy+Sfrm0/J6k0/6G3Jr5otLw3AKZxOadGb0t/PW62oDTervWuzS60Q4e4t7V8n7Vkubfv135aw/woMs0YwvIMkd0/rnN1LlbvIut210kXPST7BNrww+xAsAOQr4USmOr8wR2mZTn1/axedV6+q3SUBZef4LmvB5ZrJefe++K86HaWWQ6XmQ6TAM7RmTk+W5r8kLfnAuk5QXesbzNptS6tyAAWRcsRaW7VznnW7xRXWGogqZxihz0qXtv8hrZ9qTXvMTM3/vDqdpN4PSw0vLI2qyz2CBYAzevD7dZq2cq8Gt62tt4e3s7scoOzF77GmOh2LsdZfBNS2NqGq3e7cu+L+14EN0rTrrD717t7SoLektiNKrWwAZ3FggzRl5L9rqnykS14t3F42mSekmH+s0YzMVCkzzdpos9ml5bpjU1kgWAA4o/V743XZe4vk6ebQkkcuUDV/L7tLAlzXiXirS0zUH9btjmOl/i9Y0ygKw+mU4mOlQ1ukjFSrj331xiwQR8XlzJb2rrD+DhkOqzlCWAfJw6fw19o0w9rDJmdPieFTpBpNS7riSqswn7VpCwNUMq3rBKt1nSCt35ugaSv36rbeDewuCXBdPsHSiG+l+S9b06NWfCod3Chd8YkUXPfsj3U6pV0LralZW3+xWuP+l+GQGl0k9XnMGlEBKoIjO6SV/7OaJOSsVcrh7mM1WGh2qdTi8nPvPJ2WKP3+iLT2a+t2ZB/pyi/Yt8ZGjFgAldC0FXv04A/rFV7VR/PH95HDwSJuoNi2zbJGL9ITJTdPawfdHvdLvqesZTq+S1o3RVo72Wprm8PNyxqp8PSzRi7S4k/e13yINOBlKSC0LF4JUPKyM6XF70jzXpKyM6xj3sHWCIPptDaKS4o7eb5XkNRmuNRqmDWS8d+WsOlJ1ijF/FesqU8ypG73SBc8IbnxnXlJYyoUgLM6kZGtzi/MUWJalr64vqP6NKlhd0lAxXBkh/TLOCl2gXXb4S6FNLX65qclSEe2ScdjT57vFSi1vEJqO8rqVJXzocg0pSNR0j+vSBu+l2RKfiHS0M+lyF5l/KKAYjoSZS2q3r/Ouh3Z2wreDfudnDZomtLBTdK236Q1X0vxu04+3reatYDa4WYtuN616ORC6+AI6fKPpIiuZfqSKhOCBYBzeubnTfpiUaz6Nquhz0Z3tLscoOIwTast7eynrBa2pzGk+j2thaVNB517useBDdL0W/69liH1fkTqOb7C7/aLCmLLz9KPt0kZSdYIxYCXpdZXn31RtdMp7fzbmia44y8pPeH0c6o3tgJ5xxslr4BSKx8ECwAFsONQsvq+MV8OQ1rw0AUKCy7CgjkAZ2aaUsJe6cB66dBma9539SbW/hl+1Qt3rcwT0m8PSGu+sm5H9pGu+FTyDyncdRL2Wm01o/+2umJ5+lsfyup0kNpdJwXULNz1UHGkHJGiZku7l0j7VknuXtY6oaoNrH0gQlsV7npZGdLc56VFb1m3I7pJw/5X+Ol82ZlWF7fD2/4NI4ZVS1iHgnd8QrEQLAAUyIhPlmrJzqO6s09Dje/fxO5yAJzL2inSr/dZ00ACakmXvnPu3b9NU4r+y9p3I/qvM5/ncJeaXSZd8Li1KSAqh4xUacl70sK3pMyUM59Xq43UfrS17sHT7+zXPLRV+vHmk1Ofutxp7Sfh5lFSVaMMESwAFMiv6/frjm9Wq7q/lxY/fIE83R12lwTgXA5tkaaNttZrSFKDC6V+z0g1W+b9Bjf5sLT+W2n1l9KR7f8eNKxNABtcYH1QzEqzvqne+L31rbBkdebp+7Q1B97BvwkV2rbfpV/uPbloumZL689GeGdrQXXCv3u+bP3t5K71PlWkDtdLra60Rt/++2fuaLTV8Wn5p1J2unXupW9bO9jDZREsABRIZrZTXV/6W4eT0vXeyHYa1LoQm4MBsE96sjTvRWnZxyc/8PnXtEKD6bQ27Tu6Q3JmWfd5Bkjtr7XCQtX6+V9z/3rpz8esTcIkKaK71Ta3qJuDmab1oXT3Ein1qHTiuBQYZrXQrd2ONSIFtXeVtHe5lBhndU6qWl+q28X6XZ9rfc6ZZKRIfzwmrfrCuh1c1wqTLa7If3pRylFrd+rlH+dtPhBYx9pxPjvT+h3vW3nyvoZ9pcHv08msAiBYACiw1//cpnf/3qHzI6vq25u72F0OgMI4Gi3NecpqdZsTIv4rrIPU/jrrA6N3Af4b6XRKq/4n/fmkNS3Gp4o0+AOp6SUFryn1mLTyc2ntN1bAyY9vdanLHdL5t5f8JoA5H2tcef6902ntbbL4XStU5MfdxwqLXe86954p/7VvtTR9rBU8JevxfR4v2O/BmW11bVr9pRVAs9JOOcGQGvWTzrtBanyxa/8OkItgAaDA4uJPqPvLf8tpSnPu66mGNeiuAbiczBNS3BrrQ6O7l/WtdrVGUpWIol3vaLT0/Q3S/rXW7bbXSBc+efbF3anHpKUfSEs/sjoASZKHn7UGJDBM8g6y2olGzz3Z5adKPWun8qYDi1Znjr0rpY3TrfcgZ15/9UZWq99WV0oNLyy5D7mHtlh7KGz5WUrcZ+1Z4uFtjfC0vlKq36t4ozGHt0s/3Xlyapqbp9WWtUo9a0+UQ1ukXYtPTl9yuFuvsdu4s+827cyWFr5h7SPhzJICalttWovavjjzhBS70BrB8PCxfsLOK/qfOZRbBAsAhTL2y5Wavfmgrj4vXC8PY4dfALK6+vz1jLWwV7KmU3W7R2o2yPrAbhjWFJi4tdaUmo0/nPwGu2ZLa0Si2WWSl3/e62ZnWntzzHn65M7Lra6UBrxy+maCZ2Oa0s550oLXT+4bciahra3NCpsPLnrAOBIl/f6w1Ur4bAJqW+2A219XuMXK2Vn/2UAu3erY1flWa/raqYHONKWY+dLCN633IEfTQdaGcpG9T+4+nZZojR4t/0Q6Fm0da3G5NPCNwr3fqLQIFgAKZdWuYxr64RK5OwzNe6C36lQp4rxdABXPnuXSrIekuNUnj/lWl9y9rW/NTefJ4zVbSb0etD7gnmvhd3qy9M+r1odp02l1ubrkNWv04lwf/g9skP58/OSHaoe71PLfD9S120qGm7W4PXahNW0nZzO1ej2kQW9aoxkFlZ5k7fC89ENrPYvDw1o/0HywtVbEmSWlHpE2/yRtmm6tJZGsHaX7PGZNQzvXe3FggzTzjpOjLQ37SoPekoLDz13fvlXSgjesqVM5DIe1/iE90frJ+R15B0kXv2x1dmKaEgqIYAGg0EZ9tlSLdhzVqM519fzlhexXDqBiczqlDd9J676Rdi+Tsk6cvM/D1/qQ3eF6KbxT4T+w7l0p/XjLyTn/9XpI/Z+3ulb9l2laH6KXfWzVItOaJtTh+n/XGZzhQ3jqMSsULH7HGlFx87Tan3YfZ33QPhPTtJ7nzydOjqw06i9d/OKZ2/FmpUurJlk7pqccto6FtpIueNIKC6cGjGM7rdez4jMroHgHSxe/VLQP/oe3Wc+9Y87JjmE5qjeROt8stR5++ggScA4ECwCFtmznUV39yVJ5uBma/0Af1WbDPAD5yco4+c16cLjkV6P4bWkzUq3RiyXvW9OAJKlaQ2sEwrea1RFp/zprs8EcLS63OhlVqVew5zgWY20yuGO2ddu3mtRjvDV1yL/GyfMy06yRh6Ufnny+KvWtHaMb9y/Yc6Unnwwz6Yknny+yj/W6Uo9a05Ki50r692NYs0ulS14vmU0K4/dISQesBfveQVbHMEYoUEQECwBFcvXHS7Qs5phGd4nQM4Nb2l0OgMrm+C5rXcemH/NOscrh5iW1vMJadxDWvvDXN02rq9Hsp6SjUSePh7aSgsKtD+PHdkpp8dZxD19rbUaXO4vWvSr1mLUGZPWXJwPGqRr2k7rcbu0fAZRDBAsARbJ4xxGN/GyZPN0dmnNvL9WtxloLADY4ES/tWvRvS9N0KbC2FFTH2gPDr3rxr5+dJa350trM7cCG0+8PDJM63iR1GFMyC5yzM621KtF/W+sxfKtLfiFWt6rCrPcAbECwAFAkpmnqms+XadGOo+rbrKY+G32e3SUBQOlKPmx1WEpLsDZzCwiVQttIbu52VwaUC4X5rF3MSZEAKhLDMPTMZS3k7jA0Z8tBzd16yO6SAKB0+YdY6yw63mh1pArrQKgAiohgASCPhjUCdEP3+pKkp3/epLTMbJsrAgAAroBgAeA0d1/YSDUDvbTraKo+nBdtdzkAAMAFECwAnMbfy12PD2wuSXpv7g6t3RNvb0EAAKDcI1gAyNeg1rU0qHUtZTtNjft2jVLSs+wuCQAAlGMECwD5MgxDzw9ppdpB3oo9mqpnf9lsd0kAAKAcI1gAOKMgXw+9flVbGYb07Yo9+mV9nN0lAQCAcopgAeCsujSoptt6NZAkPfzDBsUcSbG5IgAAUB4RLACc0339GqtTvapKTs/S7ZNX04IWAACchmAB4Jzc3Rx6d2Q7VfPz1Jb9iXrm5012lwQAAMoZggWAAqkZ6K23h7eTYUhTlu/R7xsP2F0SAAAoRwgWAAqse6PquqXnv+stpq/XwcQ0mysCAADlBcECQKHc16+xWoYFKj41U+O/Wyen07S7JAAAUA4QLAAUiqe7Q29d3U7eHg4tiDqiyct3210SAAAoBwgWAAqtYQ1/PXxxU0nSq79v1dHkdJsrAgAAdiNYACiSa7vUU4vagUpMy9Irv2+zuxwAAGAzggWAInFzGJowuIUkaerKPVq7J97eggAAgK0IFgCKrENEVQ1tX0eS9OTMjSzkBgCgEiNYACiWhwc0VYCXu9bvTdCfm9nbAgCAyopgAaBYQgK8dH23epKkt//aIdNk1AIAgMqIYAGg2G7oXl9+nm7asj9RszcftLscAABgA4IFgGIL9vXU6K71JEnv/B3FqAUAAJUQwQJAibipR6R8Pd20cV+i5m47ZHc5AACgjBEsAJSIqn6euvb8CEnSB3Ojba4GAACUNYIFgBJzQ/f6cncYWrnruDbuS7C7HAAAUIYIFgBKTM1Abw1oVUuSNGlxrL3FAACAMkWwAFCixvy7iHvmujgdS8mwtxgAAFBmCBYASlT7usFqFRakjCynpizfbXc5AACgjBAsAJQowzByRy2+XrpLWdlOewsCAABlgmABoMQNalNL1fw8tT8hjQ3zAACoJAgWAEqcl7ubhncKlyR9w3QoAAAqBYIFgFIxvGNdGYa0IOqIYo+k2F0OAAAoZQQLAKUivKqvejUOkSRNWcGoBQAAFR3BAkCpGdXZ2on7u5V7lZ6VbXM1AACgNBEsAJSaPk1CVCvIW8dSMvT7xgN2lwMAAEoRwQJAqXF3c2h4x7qSpMlLmQ4FAEBFRrAAUKqu7hguN4eh5bHHtGV/ot3lAACAUkKwAFCqQoO8dXGLUEnSl0ti7S0GAACUGoIFgFI3+t+duH9cs0/xqRn2FgMAAEoFwQJAqetYr4qa1QpUWqZT01busbscAABQCggWAEqdYRga09VqPfvlkl3Kdpo2VwQAAEoawQJAmRjcNkzBvh7ae/yE/tpy0O5yAABACSNYACgT3h5uua1nP5gXLdNk1AIAgIqEYAGgzNzQvZ683B1auydeC3ccsbscAABQgggWAMpMjQBvjexsjVq881cUoxYAAFQgBAsAZeqWng3k6ebQitjjWrrzmN3lAACAEkKwAFCmQoO8dXXHcEnSu39H2VwNAAAoKQQLAGXu1t4N5OFmaHH0Uc3bdsjucgAAQAkgWAAoc2HBPrquSz1J0jM/b1Z6Vra9BQEAgGIjWACwxbi+jRQS4KWYIyn6bEGM3eUAAIBiIlgAsEWAt4cevaSpJOm9v3doX/wJmysCAADFQbAAYJshbcPUqV5VncjM1lMzN9J+FgAAF0awAGAbwzD07JCW8nRzaM6WQ/p66S67SwIAAEVEsABgqyahAXpogDUl6tlft2jrgUSbKwIAAEVBsABguxu61VPvJiHKyHLq7ilrdCKDLlEAALgaggUA2xmGodeubKPq/l7afjBZj89gvQUAAK6GYAGgXKju76V3hreVw5B+WL1XXy/bbXdJAACgEAgWAMqNrg2r68GLrfUWE37epNW7j9tcEQAAKCiCBYBy5ZaekRrQMlSZ2aZu/3q1Diel210SAAAoAIIFgHLFMAy9emUbNQjx04HENN01ZbWysp12lwUAAM6BYAGg3PH3ctfH13aQn6eblu48plf+2GZ3SQAA4BwIFgDKpYY1AvTqlW0kSZ/8s1O/b9xvc0UAAOBsCBYAyq1LWtXSzT0jJUmP/bhRx1IybK4IAACcCcECQLk2/qImalzTX0dTMjTh5012lwMAAM6AYAGgXPN0d+iVYW3kMKQZa+P015aDdpcEAADyQbAAUO61DQ/W2B7WlKhHf9yg5PQsmysCAACnIlgAcAn39musiGq+OpiYrk//2Wl3OQAA4BQECwAuwdvDTQ/9uyv3Zwt26kgyG+cBAFCeECwAuIwBLUPVpk6QUjKy9d7fO+wuBwAA/AfBAoDLMAxDDw2wRi0mL9ul3UdTba4IAADkIFgAcCldG1RXz8Yhysw29eac7XaXAwAA/kWwAOByHuzfRJL007o47T3OqAUAAOUBwQKAy2kZFqQejaor22nq84UxdpcDAABEsADgom7uae1rMXXFHsWnZthcDQAAIFgAcEndG1ZX81qBSs3I1tdLd9ldDgAAlR7BAoBLMgwjd9Ri4uJdSsvMtrkiAAAqN4IFAJc1sHUthQX76Ehyumau3Wd3OQAAVGoECwAuy8PNoTFd60mSvlgUK9M07S0IAIBKjGABwKVd1TFcPh5u2nogSUt3HrO7HAAAKi2CBQCXFuTjoaEdwiRJXyyi9SwAAHYhWABweTnToeZsOag9x9gwDwAAOxAsALi8hjUC1KNRdTlN6cslsXaXAwBApUSwAFAhXN+tniTp2xV7lJKeZW8xAABUQgQLABVC78Y1VK+ar5LSsvTjGlrPAgBQ1ggWACoEh8PQ6H/XWkxcTOtZAADKGsECQIUxrEMd+Xm6acehZC3cccTucgAAqFQIFgAqjABvD115Xrgka8M8AABQdggWACqUnOlQf289pJgjKfYWAwBAJUKwAFCh1K/upz5NQiRJ/1vIhnkAAJQVggWACmdsz0hJ0tQVe3QgIc3magAAqBwIFgAqnC6R1dSpflVlZDv14bwddpcDAEClQLAAUOEYhqFxFzaSJE1h1AIAgDJBsABQIXVpUE2d6lVVRpZTH82PtrscAAAqPIIFgArJMAyN62uNWnyzfLf2Hk+1uSIAACo2ggWACqtLg2rqEllNGVlOPfPzZrvLAQCgQiNYAKiwDMPQM4NbyN1haPbmg5q9+aDdJQEAUGHZGizq1asnwzDy/Lz00kt2lgSggmlcMyC3/ezTP21SakaWzRUBAFAx2T5iMWHCBO3fvz/356677rK7JAAVzN0XNFJYsI/2xZ/Qm7O3210OAAAVku3BIiAgQKGhobk/fn5+dpcEoILx8XTThMEtJEmfLojR31uZEgUAQEmzPVi89NJLqlatmtq1a6dXX31VWVlnn6aQnp6uxMTEPD8AcC4XNqup67pESJLunbpOe47RJQoAgJJka7C4++679e2332ru3Lm65ZZb9MILL+jBBx8862NefPFFBQUF5f6Eh4eXUbUAXN1jA5upTXiwEk5k6vbJq5WWmW13SQAAVBiGaZpmSV7w4Ycf1ssvv3zWc7Zs2aKmTZuedvx///ufbrnlFiUnJ8vLyyvfx6anpys9PT33dmJiosLDw5WQkKDAwMDiFQ+gwtsXf0KD3lmg46mZuqxNbb11dVs5HIbdZQEAUC4lJiYqKCioQJ+1SzxYHD58WEePHj3rOZGRkfL09Dzt+KZNm9SyZUtt3bpVTZo0KdDzFebFAoAkLd5xRNf9b7mynKZu7dVADw84/YsOAABQuM/a7iX95CEhIQoJCSnSY9euXSuHw6EaNWqUcFUAcFLXhtX1yrDWum/aOn00P1q1g711XZd6dpcFAIBLK/FgUVBLlizRsmXL1KdPHwUEBGjJkiW69957dc0116hKlSp2lQWgkriifR3FxZ/Qa39u19M/bVJooLcuahFqd1kAALgs2xZve3l56dtvv1WvXr3UokULPf/887r33nv1ySef2FUSgErmjj4NNaJTuJymdPe3a7R693G7SwIAwGWV+BqLssYaCwDFkZXt1NgvV2rutsOq6uep6bd1Vb3q7KcDAIBUuM/atu9jAQB2cndz6L2R7dUqLEjHUjJ069eraEMLAEARECwAVHp+Xu76fPR5qu7vqa0HkjThl812lwQAgMshWACApBqB3nrz6rYyDOmbZbv1y/o4u0sCAMClECwA4F89GoXo9t4NJEkP/7BB++JP2FwRAACug2ABAP9xb9/Gal83WMnpWXqOKVEAABQYwQIA/sPdzaHnL28lN4ehWRsPaEHUYbtLAgDAJRAsAOAUzWoF6rouEZKkp2ZuUnoWXaIAADgXggUA5OPefo1V3d9LO4+k6POFMXaXAwBAuUewAIB8BHp76JEBTSVJH86NVkJqps0VAQBQvhEsAOAMLm8XpqahAUpKz9LnC3faXQ4AAOUawQIAzsDhMHTPhY0kSV8silV8aobNFQEAUH4RLADgLPq3CP3PqAVrLQAAOBOCBQCchcNhaFxfRi0AADgXggUAnMNFza1Ri+T0LE1cHGt3OQAAlEsECwA4B4fD0B19GkqSvlyySycy2NcCAIBTESwAoAAGtAxVnSo+OpaSoe9X77W7HAAAyh2CBQAUgLubQzd1ry9J+mzBTmU7TZsrAgCgfCFYAEABXdUxXMG+Htp1NFV/bjpgdzkAAJQrBAsAKCBfT3dde36EJOnjf3bKNBm1AAAgB8ECAArhui715Onu0No98VoRe9zucgAAKDcIFgBQCCEBXhravo4k6ZN/om2uBgCA8oNgAQCFNLZHfRmGNGfLIe04lGR3OQAAlAsECwAopMgQf/VrVlOS9Ok/MTZXAwBA+UCwAIAiuKVXpCTpxzX7dCgxzeZqAACwH8ECAIqgQ0RVdYioooxsp/63KNbucgAAsB3BAgCK6NZeDSRJXy6J1dHkdJurAQDAXgQLACiivs1qqHWdIKVmZOuj+XSIAgBUbgQLACgiwzB0X7/GkqQvl+zSQdZaAAAqMYIFABRDr8Yh6hBRRelZTn0wd4fd5QAAYBuCBQAUg2EYuv8ia9Tim+W7tedYqs0VAQBgD4IFABRT1wbV1b1hdWVmm3p8xkaZpml3SQAAlDmCBQCUgAmDW8jT3aH52w/rp3VxdpcDAECZI1gAQAmIDPHXXX0aSpIm/LxZ8akZNlcEAEDZIlgAQAm5pVcDNarhr6MpGZrw82amRAEAKhWCBQCUEE93h14a2kqGIU1fs09fLd1ld0kAAJQZggUAlKAOEVX18MVNJUnP/LxZi3ccsbkiAADKBsECAErYzT0jdXm7MGU7Td3+zWrFHEmxuyQAAEodwQIASphhGHrxilZqEx6s+NRMXf3xEu04lGx3WQAAlCqCBQCUAm8PN30++jw1qRmgQ0npGv7JUm0/mGR3WQAAlBqCBQCUkur+Xppy8/lqXitQR5KtcLE5LtHusgAAKBUECwAoRVX9PPXN2M5qFRakYykZGvnZUm3cl2B3WQAAlDiCBQCUsmBfT319U2e1/XfNxchPl2rdnni7ywIAoEQRLACgDAT5eOirGzvpvIgqSkzL0vUTV2jXUbpFAQAqDoIFAJSRAG8PTbyhk1qGBepYSobGfLFCx1My7C4LAIASQbAAgDLk7+Wu/43uqLBgH8UcSdHYL1cqPSvb7rIAACg2ggUAlLEagd764vqOCvB218pdx/Xm7Ci7SwIAoNgIFgBgg8Y1A/TalW0kSZ/8E61Vu47ZXBEAAMVDsAAAm/RvEaor2ofJaUr3T1un1Iwsu0sCAKDICBYAYKOnLm2h0EBvxR5N1Su/b7O7HAAAioxgAQA2CvLx0CvDWkuSvlwSq+0Hk2yuCACAoiFYAIDNejYOUf8WNeU0pRd/22J3OQAAFAnBAgDKgYcubip3h6G52w5r8Y4jdpcDAEChESwAoByIDPHXqM51JUnP/7ZFTqdpc0UAABQOwQIAyom7L2ykAC93bYpL1M/r4+wuBwCAQiFYAEA5Uc3fS7f0ipQkvfNXlLIZtQAAuBCCBQCUI6O71lOgt7uiD6fo940H7C4HAIACI1gAQDkS4O2h67vVlyS9+3cUay0AAC6DYAEA5cz13erJ38tdWw8kac6Wg3aXAwBAgRAsAKCcCfb11LVdIiRJ783dIdNk1AIAUP4RLACgHLqpe315ezi0fm+C5m8/bHc5AACcE8ECAMqhav5eGtXZGrV4929GLQAA5R/BAgDKqVt6RsrT3aFVu45ryc6jdpcDAMBZESwAoJyqEeit4R3DJUnv/b3D5moAADg7ggUAlGO39GogDzdDi6OPatWuY3aXAwDAGREsAKAcCwv20dD2dSRJb82JsrkaAADOjGABAOXcHX0aysPN0IKoI1q044jd5QAAkC+CBQCUc+FVfXM7RL38+1Y6RAEAyiWCBQC4gDsvaCg/Tzet35ug3zYcsLscAABOQ7AAABdQ3d9LY3tGSpJe/WOrMrOdNlcEAEBeBAsAcBE39YhUNT9PxR5N1ecLY+wuBwCAPAgWAOAi/L3c9dCAppKkN2ZvV/ThZJsrAgDgJIIFALiQKzvUUc/GIcrIcurB79cr28lCbgBA+UCwAAAXYhiGXryilfy93LVq13FNXBxrd0kAAEgiWACAywkL9tEjl1hTol6etVXLdh61uSIAAAgWAOCSRnSsqwEtQ5WR7dTNX61ivQUAwHYECwBwQQ6HoTevbqt2dYOVcCJT13+xQoeT0u0uCwBQiREsAMBFeXu46dPrzlPdqr7afSxVV328RHuOpdpdFgCgkiJYAIALq+7vpUk3dFJYsI9ijqToig8Xa1Ncgt1lAQAqIYIFALi4+tX9NP32rmoaGqDDSem6+uOl+nvrQbvLAgBUMgQLAKgAagZ6a9qtXdQlspqS07N046SV+mzBTpkm+1wAAMoGwQIAKohAbw9NuqGTRnQKl2lKz/26RU/M3Cgnm+gBAMoAwQIAKhBPd4deuLyVnhzUXIYhfb10tx78gR26AQClj2ABABWMYRi6oXt9vXV1W7k5DH2/aq/um7ZWWdlOu0sDAFRgBAsAqKAGtw3TuyPayd1haObaOL38+1a7SwIAVGAECwCowC5pVUtvDW8rSfp0QYx+Whdnb0EAgAqLYAEAFdyg1rV1a68GkqSHvl+vrQcSba4IAFARESwAoBIYf1FjdW9YXScys3Xb16uVlpltd0kAgAqGYAEAlYC7m0PvjminmoFeijmSovfn7rC7JABABUOwAIBKooqfp56+tIUk6aP50Yo6mGRzRQCAioRgAQCVyMUtQ3Vh0xrKzDb12I9sngcAKDkECwCoRAzD0DODW8jHw03LY4/p+9V77S4JAFBBECwAoJKpU8VX4/o2kiS98ed2nchgITcAoPgIFgBQCY3pVk9hwT46kJimiYtj7S4HAFABECwAoBLycnfT/Rc1liR9MG+H4lMzbK4IAODqCBYAUEkNbhumpqEBSkrL0gfzou0uBwDg4ggWAFBJuTkMPTSgqSRp4uJY7Ys/YXNFAABXRrAAgEqsd+MQnR9ZVRlZTr05e7vd5QAAXBjBAgAqMcMw9PCAZpKkH1bv1dYDiTZXBABwVQQLAKjk2oYH65JWoTJN6dXft9ldDgDARREsAAAaf1ETuTkM/bX1kJbHHLO7HACACyJYAAAUGeKvqzuGS5JemrVFpmnaXBEAwNUQLAAAkqRxFzaSj4ebVu+O15+bD9pdDgDAxRAsAACSpBqB3rqxe31J0iu/b1VWttPmigAAroRgAQDIdXOvSFXx9VD04RR9v2qv3eUAAFwIwQIAkCvQ20N3XtBIkvTmnO06kZFtc0UAAFdBsAAA5HHN+XUVFuyjg4npemsOm+YBAAqGYAEAyMPL3U1PX9ZCkvTJgp1aEUv7WQDAuREsAACn6de8pq7sUEemKd03ba2S07PsLgkAUM4RLAAA+Xry0uYKC/bRnmMn9OzPm9nbAgBwVgQLAEC+Arw99NqVbWQY0tSVe/Th/Gi7SwIAlGMECwDAGXVpUE2PXdJMkvTK79v0zbLdNlcEACivCBYAgLO6qUek7ujTQJL02IwNmrKccAEAOB3BAgBwTuMvaqJRnevKNKVHpm/QI9M3KD2LPS4AACcRLAAA52QYhp4d3FLjL2osw5CmLN+tqz5aoujDyXaXBgAoJwgWAIACcTgM3XlBI028vpOCfDy0bm+CLnl7gT79Z6eynXSMAoDKjmABACiUXo1D9Ns9PdSjUXWlZzn1/G9bNOKTpTqQkGZ3aQAAGxEsAACFFhbsoy9v6KSXh7aSv5e7lsce08B3Fmhh1BG7SwMA2IRgAQAoEsMwdHXHuvr5ru5qVitQR1MydO3/lmnqCrpGAUBlRLAAABRL/ep++vH2rrqyQx2ZpvTw9A2avnqv3WUBAMpYqQWL559/Xl27dpWvr6+Cg4PzPWf37t0aOHCgfH19VaNGDT3wwAPKysoqrZIAAKXE28NNrwxrrWvPj5BpSuO/W6ef18XZXRYAoAyVWrDIyMjQlVdeqdtuuy3f+7OzszVw4EBlZGRo8eLFmjRpkiZOnKgnn3yytEoCAJQiwzD0zGUtNLxjuJymdP+0ddq4L8HusgAAZcQwTbNUewROnDhR48aNU3x8fJ7js2bN0qBBgxQXF6eaNWtKkj766CM99NBDOnz4sDw9PQt0/cTERAUFBSkhIUGBgYElXT4AoJCcTlM3f7VKc7YcVGSIn365q7t8Pd3tLgsAUASF+axt2xqLJUuWqFWrVrmhQpL69++vxMREbdq0ya6yAADF5HAYenXY/9u78/CoyoP94/csmckC2UhIWMKSsC8CgmDArYhorbTWjdYWoXV9ofUnWBU3aFWUWl/r8qK1VsHX8hYX3Aq4IEpdAFEggBDWAAmQBEIgeyaZmef3RyAKsg2Tyckk3891zTXMyZnkHq7nmpw7z5znnKXU2Ejl7K/Qn97baHUkAEAjsKxYFBQUHFUqJNU/LigoOOHzPB6PSktLj7oBAJqWhBiX/jp2oGw26bVv8rRofb7VkQAAIRZQsZg6dapsNttJb5s2bQpVVknSY489pri4uPpbWlpaSH8eAODMZGa00aSLukmSpr+3QWXVtRYnAgCEUkAfer3zzjs1YcKEk+6Tnp5+Wt8rNTVVK1euPGpbYWFh/ddO5N5779WUKVPqH5eWllIuAKCJ+v3F3bRwfb52FFXo6Y+36oEr+lgdCQAQIgEVi+TkZCUnJzfID87MzNSMGTO0b98+tW3bVpK0ePFixcbGqk+fE//icbvdcrvdDZIBABBabqdD08f00YTZX2v2sp26dkiaeqa2tjoWACAEQnaORW5urrKyspSbmyufz6esrCxlZWWpvLxckjR69Gj16dNH48aN09q1a/Xhhx/qgQce0KRJkygOANCMXNSzrS7tmyKf32jau98qxIsRAgAsErJiMW3aNA0aNEjTp09XeXm5Bg0apEGDBumbb76RJDkcDi1YsEAOh0OZmZn69a9/rRtuuEEPPfRQqCIBACzy4BV9FBlh11c7irWQE7kBoFkK+XUsQo3rWABAeHjq4y166uOtSkuM0uLJFyoywmF1JADAKYTFdSwAAC3LLRekKyXWrbziKr2ybKfVcQAADYxiAQBoFNEup+66tJck6X8+2aYD5R6LEwEAGhLFAgDQaK4a1EH9OsSqzOPVUx9vtToOAKABUSwAAI3Gbrfp/svrlhSf+9UufbunxOJEAICGQrEAADSqzIw2uuKsdvIb6cF3v5XfH9ZriAAADqNYAAAa3QM/6aMYl0Nrcg/pjVV5VscBADQAigUAoNGlxkVq8iU9JEkz39+kgxU1FicCAASLYgEAsMT44V3UM6W1DlbW6r6313NFbgAIcxQLAIAlIhx2PX7NWYpw2PT+twX654pdVkcCAASBYgEAsMyAtHjdc1ndtS0eXpCtDXtZJQoAwhXFAgBgqRvP66pRvduqxufXf/1ztQpKqq2OBAA4AxQLAIClbDabnrh2gDomRCm3uFLXvbBcuw9WWh0LABAgigUAwHLx0S7Nu+VcdUqMVm5xpca+sELb95dbHQsAEACKBQCgSeiYEK3Xb81UelKM9hyq0k+e+Vz/+DxHPi6gBwBhgWIBAGgyUuMi9dqtmRrRrY2qa/16ZGG2rn5+mb7KOWB1NADAKdhMmC8cXlpaqri4OJWUlCg2NtbqOACABmCM0byv8zRjYbbKPV5J0nndknTn6B4a1CnB4nQA0HIEcqxNsQAANFkFJdV69pOtev2bPNX66n5djRnQXndf2lNpidEWpwOA5o9iAQBoVvKKK/X0kq2av3q3jJFcTrvuv7y3bsjsLJvNZnU8AGi2AjnW5hwLAECTl5YYrSeuHaAFvz9PwzPaqMbr1/T3NujO19eqqsZndTwAgCgWAIAw0rd9nObeNEz3X95bDrtNb63Zo+teWK6SqlqrowFAi0exAACEFZvNppsvSNerNw5VYoxL6/eU6NZXv5HHy8wFAFiJYgEACEvDM5L06o1D1crt1IqcYk15fa38XPMCACxDsQAAhK2+7eP0wrjBinDYtHBdvv7y0WarIwFAi0WxAACEtRHdkvTEtQMkSX/7z3Yt215kcSIAaJkoFgCAsPezgR30i3PSZIx05+trVVLJydwA0NgoFgCAZuHBK/qoc5to5ZdU68F3v7U6DgC0OBQLAECzEON26q9jB8pht+m9tXu1cF2+1ZEAoEWhWAAAmo2zOyVo4kUZkqTp732rQ5U1FicCgJaDYgEAaFZ+N7KburVtpaLyGj2yMNvqOADQYlAsAADNitvp0J+v7i+bTXpz1W59vnW/1ZEAoEWgWAAAmp3BnRM1PrOLJOnet9arwuO1NhAAtAAUCwBAs3TXpT3VIT5Kuw9W6b8/2mJ1HABo9igWAIBmKcbt1Iyf95MkzV62Q2tyD1qcCACaN4oFAKDZuqhnW101qIOMke6Zv041Xr/VkQCg2aJYAACatQev6KM2MS5tKSzXXz7cZHUcAGi2KBYAgGYtIcalGT/vL0l68fMdemfNHosTAUDzRLEAADR7l/VL1aQf1V04757567R+d4nFiQCg+aFYAABahDsv6amRvdrK4/Xr5v/9RlsKy6yOBADNCsUCANAi2O02PfWLgeretpUKSqt19XPL9J8tXDwPABoKxQIA0GLERkbo9VszNbRLoso8Xv12ztd6cvEWlVbXWh0NAMIexQIA0KIkxLj06k1DddWgDvL5jZ5ZslXnzfxETy7eopz95VbHA4CwZTPGGKtDBKO0tFRxcXEqKSlRbGys1XEAAGHCGKOF6/P19MdbtXXfd4WiW9tWuqRPikb3SdGAjvGy220WpgQAawVyrE2xAAC0aD6/0aL1+Xr9mzwt335AXv93vxZTYt36zYiuGp/ZRVEuh4UpAcAaFAsAAM5ASVWtlm7ep8UbC7V0836Ve7yS6grGnZf01LVDOspmYwYDQMtBsQAAIEger0//Xpuvvy7eoj2HqiRJvxyapod+1k8RDk5RBNAyBHKszTsjAADH4XY6dM3gjvrkDxfq7st6ym6T/rUyT7+Z/bVKqlhFCgCORbEAAOAk3E6HJl7UTS/eMETRLoe+2FakG15eqepan9XRAKBJoVgAAHAaLu6dotdvzVR8dITW5h3SlNez5PeH9aeJAaBBUSwAADhN/TrE6YVfD1aEw6ZF6wv0xEebrY4EoBn7ZmdxWM2OUiwAAAjAsPQ2mnnVWZKk55Zu17tZeyxOBKA5+nJbka7/x1ca//JKVRxeoa6po1gAABCgqwd31MSLMiRJ9721nit2A2hQq3YV66ZXvlGN16/46Ai5neFxyB4eKQEAaGKmXNJDw7omqqLGp0n/tyasPq4AoOnasLdEE2Z/rapan87vnqRnfjlIzjBZ4jo8UgIA0MQ4HXY988tBahPjUnZ+qR5esNHqSADC3IqcA/rl31eorNqrc7ok6IVxg+V2OqyOddooFgAAnKGU2Ej9dexA2WzS3K9ytWDdXqsjAQhT72bt0Q0vrVRptVdnd4rXSxPOUbTLaXWsgFAsAAAIwgU9kuvPt5g6f712FlVYnAhAONl1oEKTX8vS/5uXpRqfXz/ul6r/u/lcxUZGWB0tYOFVgwAAaIImj+qhr3cc1MqdxZr0f6s1/7+GKzIifD6+AKBhGGO0fPsBvZu1V3tLqrSv1KNav1+psZF1t7i6W4zLqbyDldpaWK4PNxTIe/iaOLdckK6pl/WS3W6z+JWcGZsxJqyv7lNaWqq4uDiVlJQoNjbW6jgAgBaqoKRalz/zuYoranTlwPZ68rqBYXtwACBw76/P1/98uk0b9pYG/NwLeiTrrtE91b9jXAiSBSeQY21mLAAAaACpcZF6auxA/XbO13ona6/io12aPqaPbDbKBdCc1Xj9emjBBv1zRa4kKSrCoasHd9DAtAS1be2W02FTYWm1Cko8KiipUkFptcqqveqYEKXObWJ0bnqiBndOtPhVNAyKBQAADeSCHsl64toBuuO1LM1ZtlNxURG6Y1R3ygXQTBWVezRx7mqt3FEsm0267cIM3XJ+uhJiXFZHswTFAgCABnTloA4qqarV9Pc26OklW7Vtf7kevbK/4qLD70RMACe2r7Rav3hxhXL2V6iV26mnfzFQF/dOsTqWpVgVCgCABjZ+eBdNu6KPnHabFq7L1+XPfK6F6/Ll8XIRPaA5+H6p6BAfpXcmDW/xpULi5G0AAEJmbd4h3T5vjXYdqJQkxUY6dWnfVHVPaaW0hGilxkWqTYxbbVq5FOPmQwRAODi2VPzr5nPVqU201bFCJpBjbYoFAAAhVO7x6vml2/TW6j3KL6k+4X4ZyTEa2rWNLuyRrNF9UlhRCmiCWlqpkCgWAAA0OT6/0Vc5B/Tl9iLlFVcp72Cl9pV6dKDCo+pa/1H79m0fq3t/3FvndU+yKC2AY7XEUiFRLAAACCvFFTVateuglm8/oDe+yVOZxytJ+umA9nr8mrO42B5gsY17S3XbP1cpt7iyRZUKiWIBAEDYKq6o0bOfbNWry3fJ6zc6p0uCXrxhiOKjW+bylYDV5q/arfveXi+P16+0xCjNvbHllAqJYgEAQNhbtr1It/7vKpV5vMpIjtHcm85Valyk1bGAFmP97hI9uXizPt28X5J0Uc9kPTV2YIsr+RQLAACagU0FpfrN7K+VX1KtXqmt9dqtmYqL4noYCEytz6+yaq9Kq2pVVu1VWXWtKmp8qq71qarWJ8/h++pa/+H7Ize/qmt9qvUZ+fx+ef1GtT6/vD4jr9/I66/7d63PL5/fqNZXt83nrzu0/P4R5vcPNo8ceh57AOq02+Vy2OR02BXhsCnCYT98q9vmctjldNgUFeFQjNupGNfh+8P/jnY71erwrXWkU60jIxR7+D4ywn7KC1UaY5RbXKnPtuzX4ux9+mxLXaFw2G36/chuun1k9xa5qALFAgCAZiKvuFJXP79M+8o8Ojc9Ua/8dqjcTs65aMlqvH4VllZrf7lHRWUeFZXXaH+ZR0Xldbf9ZR4drKypKxPVtT9YHKAlctpt9WWj7t4pt9MhvzGq8fq1v9yj/EPVqqr97lozdpt05cAOuv3i7uqSFGNhemtRLAAAaEY27C3R2BdWqNzj1RVntdMzvxjUIv9y2pL4/XV/Pc/OL1VOUYVyD1Qqt7jull9SJf8ZHL1FuxyKPXxgHe12KirCrsgIh6IiHIqsv9nrH0dFOOSOsMtpr5spiHDY5LTXzSA4jmw7fO+0180q1N3bZNN34/P7EwXHjtojXzNG9TMetT6/an3fzY7U+L6bGanx1c2iVHh8qqzxqtzjVaXHp/Iaryo9XlV4fCqt/m5mptzjDej/ymm3aXDnBF3QI1k/7peq9ORWgf9HNzOBHGtzNR4AAJq4vu3j9MK4wZowe6UWrMtXamykHriij9Wx0ECMMdq+v1wrcoq1YW+JsvPLtLmg7Ki/nh/L5bArubVbSa1ch+/d9fdJrdxKiIlQbGSE4qLqikQrt1NOh70RX1XTYIxRRY1PZd8rG6VVdTM5NV6/nIdLUlKMS+3io9QuLpJV2IJAsQAAIAyM6Jakv1wzQHe8lqV/fLFDqXGRuun8dKtj4QwcKRLLtx/QipxifbXjgIrKa36wn9tpV4+U1uqe0kqdEqOPuiW3dp/ynAFINput/ryLdnFWp2n+KBYAAISJKwd1UGFptR57f5MeWZithGiXrh7c0epYOA3GGK3JO6T31+fro42F2nWg8qivu512De6coIFp8erdLla928WqS5voFjnLgPBFsQAAIIzcckG68kuqNWfZTt35xlqVVddqwoiuVsfCCRSUVOuNb/L01po92lFUUb/d5bTrnC4JOrdrGw1Lb6MBaXGclI+wR7EAACCM2Gw2TTt8fsWcZTv1x39vVHFlrf7fxd3l4ITuJmPVrmK9/OVOffhtgbyHzx6OinBodN8UXdY3VRf0SFaMm8MwNC+MaAAAwozdbtP0MX0UHx2hpz7eqmeWbNXHGwv14BV9lJnR5oTPM8bUX4vAabfL5eRjNg3JGKPl2w/o6SVb9dWO4vrtQ7skauw5abqsXyplAs0ay80CABDGXvs6V48szFZZtVeS1LtdrPp3iFVGcitV1Ph0qLJGew9VKaeoQnnFlar11f3aj3DYNKhTgkZkJGnMgHYsqxmkdbsPacbC7PpCEeGw6eeDOmjC8K7q057jE4QvrmMBAEALUlxRo78u3qK5X+06o+sbOO02/fa8rrr94u5qxV/UA1JYWq3HFmXrnay9kurOnfjlOWm69cIMtY+PsjgdEDyKBQAALVBBSbWy8g5qw95S7TpQqdaRTiVEu9Q21q30pFbqkhSt1u4IRTht2lfq0Zfbi/TBtwX6fGuRJCkl1q2/jh2o4RlJFr+Sps/vN5r3dZ4ee/+72aKrzu6gP4zuSaFAs0KxAAAAp+2TTYX60783ateBSjntNs34eT+NPaeT1bGarO37y3Xv/PVaubPuY08DOsbpkSv7q39HLpSA5ocrbwMAgNM2sleKhmck6e431+m9tXt1z/z1ytlfoXsu6yU7K03Vq/H69cJ/tuvZT7apxudXtMuhP4zuqfHDu7AiFyCKBQAAkBQZ4dDTvxio9OQYPfXxVr3wWY4KSqv1l2sGsHqUpKy8Q7rnzXXaXFgmSbqoZ7IeubKfOiZEW5wMaDooFgAAQFLdNTLuGNVDnRKjdfeb6/Ru1l4drKzV8786u8Uuk1pV49N/f7RZL3+5Q34jJca4NH1MH/10QHvZbMxSAN/XMt8lAADACV11dkclxLg08Z+r9dmW/fr5c19q1vVnq3tK69P+HjuLKrRk0z5t2FuiSo9PlbU+tY+L1PndkzWiWxvFR7saNHOtz68l2YWav3qP8kuqJElOu11Duybqx/1SNTAtPuAisGxbkaa+tV65xZWSpJ8P6qAHr+ijxJiGzQ40F5y8DQAAjmtN7kHd8uoq7S/zKCrCoT/+tI+uGZx2wvMJ8kuqNH/Vbr29Zo+276844fe126Srz+6oKaN7qF1ccCso+fxGc5bt1PNLt6movOaE+6UlRml8ZheNPSdNrSMjTvo9t+8v1zNLturdw0vIto+L1Iyr+utHPdsGlRUIR6wKBQAAGsT+Mo8mv5alL7bVLUnbMSFKvxzaScO6JsrtdKja69NXOQf0+dYirdxZrCNHFU67TUO7Jmp4Rt3sRGSEQ5vyS/XZ1v3aUlguSXI77brp/K76/cjuioxwBJxtZ1GF7npzrb7eeVCSlNzaravP7qhhXRMlm1RaVauPs/dpSXahKmt8kqRWbqeuOKudLu2bqsyMNvU/91BljZZvP6CF6/O1cH1+/eu4IbOz7r6sF9f3QItFsQAAAA3G7zd64bMc/e0/21VSVXvSfYd1TdS1Q9I0um+KYk8wM7A696BmLtpUv1xrelKM/nLtWRrcOfG087y6Ypdmvr9JVbU+xbgcuu8nvXXdkDRFOH54onlVjU/vZO3RS1/s0LZ95fXbnXabol0OuZwOHajw6PtHRJf0SdHtI7uzhCxaPIoFAABocNW1Pi1cl683VuUpv6RaNV6/jJEGpsVrRPckXdQjWWmJp7dKkjFGH24o1LR3v9W+Mo9sNunXwzpr8iU9TnoOQ+6BSt0zf52W5xyQJGWmt9Hj15x1Wj/X7zdakXNA739boI82Fqiw1HPU17u3baUR3ZJ07ZCO6tueQgFIFAsAABAmSipr9fDCjXpz1W5JUutIp373o24aM6D9UVewzj1QqeeWbtP81btV6zOKinDo3st76dfDOp/RtTb8fqP80mpV1fhUXetT29ZutY2NbLDXBTQXFAsAABBWlm0v0iMLsrUxv7R+W0ZyjOKjXdpzsEqFZdX1H1U6r1uSHrmyn7okxViUFmg5KBYAACDs+PxG81fv1r9W5mpt3iH5jzlCubBHsm6/uNtpn4sBIHiBHGuzxAEAAGgSHHabrhuSpuuGpKmkqlZf5RxQjc+vtIRopSVGc/0IoImjWAAAgCYnLipCo/umWh0DQAB+uCYbAAAAAASIYgEAAAAgaBQLAAAAAEGjWAAAAAAIGsUCAAAAQNAoFgAAAACCRrEAAAAAEDSKBQAAAICgUSwAAAAABI1iAQAAACBoFAsAAAAAQaNYAAAAAAgaxQIAAABA0CgWAAAAAIJGsQAAAAAQNIoFAAAAgKBRLAAAAAAEjWIBAAAAIGgUCwAAAABBo1gAAAAACBrFAgAAAEDQKBYAAAAAgkaxAAAAABA0igUAAACAoFEsAAAAAASNYgEAAAAgaBQLAAAAAEELWbGYMWOGhg8frujoaMXHxx93H5vN9oPbvHnzQhUJAAAAQIg4Q/WNa2pqdO211yozM1MvvfTSCfebPXu2LrvssvrHJyohAAAAAJqukBWLP/3pT5KkOXPmnHS/+Ph4paamhioGAAAAgEYQsmJxuiZNmqSbbrpJ6enpuu222/Sb3/xGNpvthPt7PB55PJ76xyUlJZKk0tLSkGcFAAAAWpIjx9jGmFPua2mxeOihhzRy5EhFR0fro48+0sSJE1VeXq7bb7/9hM957LHH6mdDvi8tLS2UUQEAAIAWq6ysTHFxcSfdx2ZOp34cNnXqVP35z38+6T7Z2dnq1atX/eM5c+bojjvu0KFDh075/adNm6bZs2crLy/vhPscO2Ph9/tVXFysNm3anHSmI5RKS0uVlpamvLw8xcbGWpIBTQtjAsdiTOBYjAkcizGBYzWFMWGMUVlZmdq3by+7/eTrPgU0Y3HnnXdqwoQJJ90nPT09kG95lGHDhunhhx+Wx+OR2+0+7j5ut/sHX2sqJ3zHxsbyRoCjMCZwLMYEjsWYwLEYEziW1WPiVDMVRwRULJKTk5WcnHxGgU5HVlaWEhISTlgqAAAAADRNITvHIjc3V8XFxcrNzZXP51NWVpYkqVu3bmrVqpX+/e9/q7CwUOeee64iIyO1ePFiPfroo/rDH/4QqkgAAAAAQiRkxWLatGl65ZVX6h8PGjRIkvTpp5/qoosuUkREhGbNmqXJkyfLGKNu3brpySef1M033xyqSCHjdrs1ffp0ZlpQjzGBYzEmcCzGBI7FmMCxwm1MBHTyNgAAAAAcz8lP7QYAAACA00CxAAAAABA0igUAAACAoFEsAAAAAASNYnGaZs2apS5duigyMlLDhg3TypUrT7r/G2+8oV69eikyMlL9+/fXokWLGikpGksgY+LFF1/U+eefr4SEBCUkJGjUqFGnHEMIP4G+Txwxb9482Ww2XXnllaENiEYX6Jg4dOiQJk2apHbt2sntdqtHjx78/mhmAh0TTz31lHr27KmoqCilpaVp8uTJqq6ubqS0CKXPPvtMY8aMUfv27WWz2fTOO++c8jlLly7V2WefLbfbrW7dumnOnDkhzxkQg1OaN2+ecblc5uWXXzYbNmwwN998s4mPjzeFhYXH3f/LL780DofDPP7442bjxo3mgQceMBEREWb9+vWNnByhEuiYuP76682sWbPMmjVrTHZ2tpkwYYKJi4szu3fvbuTkCJVAx8QRO3bsMB06dDDnn3+++dnPftY4YdEoAh0THo/HDBkyxFx++eXmiy++MDt27DBLly41WVlZjZwcoRLomJg7d65xu91m7ty5ZseOHebDDz807dq1M5MnT27k5AiFRYsWmfvvv9+89dZbRpJ5++23T7p/Tk6OiY6ONlOmTDEbN240zz77rHE4HOaDDz5onMCngWJxGoYOHWomTZpU/9jn85n27dubxx577Lj7X3fddeYnP/nJUduGDRtmbr311pDmROMJdEwcy+v1mtatW5tXXnklVBHRyM5kTHi9XjN8+HDzj3/8w4wfP55i0cwEOiaef/55k56ebmpqahorIhpZoGNi0qRJZuTIkUdtmzJlihkxYkRIc6LxnU6xuPvuu03fvn2P2jZ27Fhz6aWXhjBZYPgo1CnU1NRo1apVGjVqVP02u92uUaNGafny5cd9zvLly4/aX5IuvfTSE+6P8HImY+JYlZWVqq2tVWJiYqhiohGd6Zh46KGH1LZtW914442NERON6EzGxHvvvafMzExNmjRJKSkp6tevnx599FH5fL7Gio0QOpMxMXz4cK1atar+41I5OTlatGiRLr/88kbJjKYlHI4vQ3bl7eaiqKhIPp9PKSkpR21PSUnRpk2bjvucgoKC4+5fUFAQspxoPGcyJo51zz33qH379j94g0B4OpMx8cUXX+ill15SVlZWIyREYzuTMZGTk6NPPvlEv/rVr7Ro0SJt27ZNEydOVG1traZPn94YsRFCZzImrr/+ehUVFem8886TMUZer1e33Xab7rvvvsaIjCbmRMeXpaWlqqqqUlRUlEXJvsOMBdDIZs6cqXnz5untt99WZGSk1XFggbKyMo0bN04vvviikpKSrI6DJsLv96tt27b6+9//rsGDB2vs2LG6//779be//c3qaLDI0qVL9eijj+q5557T6tWr9dZbb2nhwoV6+OGHrY4GHBczFqeQlJQkh8OhwsLCo7YXFhYqNTX1uM9JTU0NaH+ElzMZE0c88cQTmjlzpj7++GOdddZZoYyJRhTomNi+fbt27typMWPG1G/z+/2SJKfTqc2bNysjIyO0oRFSZ/I+0a5dO0VERMjhcNRv6927twoKClRTUyOXyxXSzAitMxkTDz74oMaNG6ebbrpJktS/f39VVFTolltu0f333y+7nb8PtyQnOr6MjY1tErMVEjMWp+RyuTR48GAtWbKkfpvf79eSJUuUmZl53OdkZmYetb8kLV68+IT7I7ycyZiQpMcff1wPP/ywPvjgAw0ZMqQxoqKRBDomevXqpfXr1ysrK6v+9tOf/lQ/+tGPlJWVpbS0tMaMjxA4k/eJESNGaNu2bfUlU5K2bNmidu3aUSqagTMZE5WVlT8oD0eKpzEmdGHRJIXF8aXVZ4+Hg3nz5hm3223mzJljNm7caG655RYTHx9vCgoKjDHGjBs3zkydOrV+/y+//NI4nU7zxBNPmOzsbDN9+nSWm21mAh0TM2fONC6Xy7z55psmPz+//lZWVmbVS0ADC3RMHItVoZqfQMdEbm6uad26tfnd735nNm/ebBYsWGDatm1rHnnkEateAhpYoGNi+vTppnXr1uZf//qXycnJMR999JHJyMgw1113nVUvAQ2orKzMrFmzxqxZs8ZIMk8++aRZs2aN2bVrlzHGmKlTp5px48bV739kudm77rrLZGdnm1mzZrHcbLh69tlnTadOnYzL5TJDhw41K1asqP/ahRdeaMaPH3/U/q+//rrp0aOHcblcpm/fvmbhwoWNnBihFsiY6Ny5s5H0g9v06dMbPzhCJtD3ie+jWDRPgY6JZcuWmWHDhhm3223S09PNjBkzjNfrbeTUCKVAxkRtba354x//aDIyMkxkZKRJS0szEydONAcPHmz84Ghwn3766XGPDY6MgfHjx5sLL7zwB88ZOHCgcblcJj093cyePbvRc5+MzRjm0gAAAAAEh3MsAAAAAASNYgEAAAAgaBQLAAAAAEGjWAAAAAAIGsUCAAAAQNAoFgAAAACCRrEAAAAAEDSKBQAAAICgUSwAAAAABI1iAQAAACBoFAsAAAAAQaNYAAAAAAja/weH0pgStoXKKAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# training with PINN and visualize results\n", "pinn = PINN(problem=problem,\n", " model=FeedForward(input_dimensions=1, output_dimensions=1, layers=[100, 100, 100]),\n", " scheduler=torch.optim.lr_scheduler.MultiStepLR,\n", " scheduler_kwargs={'milestones' : [1000, 2000, 3000, 4000], 'gamma':0.9})\n", "trainer = Trainer(pinn, max_epochs=5000, accelerator='cpu', enable_model_summary=False)\n", "trainer.train()\n", "\n", "# training with PINN and visualize results\n", "sapinn = SAPINN(problem=problem,\n", " model=FeedForward(input_dimensions=1, output_dimensions=1, layers=[100, 100, 100]),\n", " scheduler_model=torch.optim.lr_scheduler.MultiStepLR,\n", " scheduler_model_kwargs={'milestones' : [1000, 2000, 3000, 4000], 'gamma':0.9})\n", "trainer_sapinn = Trainer(sapinn, max_epochs=5000, accelerator='cpu', enable_model_summary=False)\n", "trainer_sapinn.train()\n", "\n", "# plot results\n", "pl = Plotter()\n", "pl.plot(pinn, title='PINN Solution')\n", "pl.plot(sapinn, title='Self Adaptive PINN Solution')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can clearly see that the solution has not been learned by the two different solvers. Indeed the big problem is not in the optimization strategy (i.e. the solver), but in the model used to solve the problem. A simple `FeedForward` network can hardly handle multiscales if not enough collocation points are used!\n", "\n", "We can also compute the $l_2$ relative error for the `PINN` and `SAPINN` solutions:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Relative l2 error PINN 95.76%\n", "Relative l2 error SAPINN 124.26%\n" ] } ], "source": [ "# l2 loss from PINA losses\n", "l2_loss = LpLoss(p=2, relative=True)\n", "\n", "# sample new test points\n", "pts = pts = problem.spatial_domain.sample(100, 'grid')\n", "print(f'Relative l2 error PINN {l2_loss(pinn(pts), problem.truth_solution(pts)).item():.2%}')\n", "print(f'Relative l2 error SAPINN {l2_loss(sapinn(pts), problem.truth_solution(pts)).item():.2%}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Which is indeed very high!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fourier Feature Embedding in PINA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fourier Feature Embedding is a way to transform the input features, to help the network in learning multiscale variations in the output. It was\n", "first introduced in [*On the eigenvector bias of Fourier feature networks: From regression to solving\n", "multi-scale PDEs with physics-informed neural networks*](\n", "https://doi.org/10.1016/j.cma.2021.113938) showing great results for multiscale problems. The basic idea is to map the input $\\mathbf{x}$ into an embedding $\\tilde{\\mathbf{x}}$ where:\n", "\n", "$$ \\tilde{\\mathbf{x}} =\\left[\\cos\\left( \\mathbf{B} \\mathbf{x} \\right), \\sin\\left( \\mathbf{B} \\mathbf{x} \\right)\\right] $$\n", "\n", "and $\\mathbf{B}_{ij} \\sim \\mathcal{N}(0, \\sigma^2)$. This simple operation allow the network to learn on multiple scales! \n", "\n", "In PINA we already have implemented the feature as a `layer` called [`FourierFeatureEmbedding`](https://mathlab.github.io/PINA/_rst/layers/fourier_embedding.html). Below we will build the *Multi-scale Fourier Feature Architecture*. In this architecture multiple Fourier feature embeddings (initialized with different $\\sigma$)\n", "are applied to input coordinates and then passed through the same fully-connected neural network, before the outputs are finally concatenated with a linear layer." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "MultiscaleFourierNet(\n", " (embedding1): FourierFeatureEmbedding()\n", " (embedding2): FourierFeatureEmbedding()\n", " (layers): FeedForward(\n", " (model): Sequential(\n", " (0): Linear(in_features=100, out_features=100, bias=True)\n", " (1): Tanh()\n", " (2): Linear(in_features=100, out_features=100, bias=True)\n", " )\n", " )\n", " (final_layer): Linear(in_features=200, out_features=1, bias=True)\n", ")" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class MultiscaleFourierNet(torch.nn.Module):\n", " def __init__(self):\n", " super().__init__()\n", " self.embedding1 = FourierFeatureEmbedding(input_dimension=1, \n", " output_dimension=100,\n", " sigma=1)\n", " self.embedding2 = FourierFeatureEmbedding(input_dimension=1, \n", " output_dimension=100,\n", " sigma=10)\n", " self.layers = FeedForward(input_dimensions=100, output_dimensions=100, layers=[100])\n", " self.final_layer = torch.nn.Linear(2*100, 1)\n", "\n", " def forward(self, x):\n", " e1 = self.layers(self.embedding1(x))\n", " e2 = self.layers(self.embedding2(x))\n", " return self.final_layer(torch.cat([e1, e2], dim=-1))\n", "\n", "MultiscaleFourierNet()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will train the `MultiscaleFourierNet` with the `PINN` solver (and feel free to try also with our PINN variants (`SAPINN`, `GPINN`, `CompetitivePINN`, ...)." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "GPU available: True (mps), used: False\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 94.64it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113] " ] }, { "name": "stderr", "output_type": "stream", "text": [ "`Trainer.fit` stopped: `max_epochs=5000` reached.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 72.21it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113]\n" ] } ], "source": [ "multiscale_pinn = PINN(problem=problem,\n", " model=MultiscaleFourierNet(),\n", " scheduler=torch.optim.lr_scheduler.MultiStepLR,\n", " scheduler_kwargs={'milestones' : [1000, 2000, 3000, 4000], 'gamma':0.9})\n", "trainer = Trainer(multiscale_pinn, max_epochs=5000, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)\n", "trainer.train()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us now plot the solution and compute the relative $l_2$ again!" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAMsCAYAAADJXzRsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsvUlEQVR4nOzdeXhcZfn/8feZyWQm+2TfmqX7RhdaKBQoLQiWRQRR+SH76g6i4oIKFFBR+eIKiooKKioKKioge1naCi2lhe5r0mbf92Qyy/n9cZLQNNtMMulk+byuKxfNOc955p5pUuae8zz3bZimaSIiIiIiIjICtkgHICIiIiIi458SCxERERERGTElFiIiIiIiMmJKLEREREREZMSUWIiIiIiIyIgpsRARERERkRFTYiEiIiIiIiOmxEJEREREREZMiYWIiIiIiIyYEgsRGbFVq1axatWqsM5ZVFSEYRg88sgjYZ1Xegvl727VqlUcd9xxoxvQCBmGwZo1a4IaW1hYyDXXXDOq8Qxm7dq1GIbB2rVrIxZDOIXy2ovIxKTEQmQSeu+99/jYxz5GQUEBLpeL3Nxczj77bH72s58d81j+9Kc/8eMf//iYP+5grrnmGgzD6PlKTExk0aJF3H///Xg8np5xa9aswTAMampq+ly7cOFCTNPsM7dhGHz+85/v+b47gTIMgyeffLLP+P4eYzSVlZWxZs0atmzZEva5CwsLMQyDs846q9/zv/71r3tei02bNoXlMdevX8+aNWtoaGgIy3xjxSOPPNLrZ/TIr69//euRDi9supMvwzB4++23+5y/5ppriI+PH9bczzzzjBIhkTCLinQAInJsrV+/njPOOIP8/HxuvPFGsrKyOHz4MP/73//4yU9+wk033XRM4/nTn/7Etm3buOWWW3odLygooL29HYfDcUzj6eZ0Onn44YcBaGho4Mknn+TWW29l48aN/OUvfxny+vfee4+///3vfPSjHw36Me+++24uvvhiDMMYdtyhev7553t9X1ZWxl133UVhYSGLFy8O++O5XC5eeeUVKioqyMrK6nXusccew+Vy0dHREbbHW79+PXfddRfXXHMNbre717ndu3djs43vz9fuvvtupk6d2utYpO4qtbe3ExU1em8r1qxZw7///e+wzffMM8/w4IMPKrkQCSMlFiKTzHe+8x2SkpLYuHFjnzdaVVVVkQmqH4Zh4HK5Ivb4UVFRXHHFFT3ff/azn+Wkk07i8ccf54c//CE5OTkDXhsTE0NeXl5IicLixYvZsmUL//jHP7j44ovD8hyCER0dfcweC+DUU09l48aNPP7443zhC1/oOV5SUsLrr7/ORz7ykX7v3IwGp9N5TB5nNJ177rmccMIJEXv8QCBAZ2cnLpcrrL+vHR0dvX42Fy9ezH/+8x82b97MkiVLwvY4IhJe4/ujGhEJ2f79+5k/f36fpAIgIyOj1/c+n4977rmH6dOn43Q6KSws5Bvf+Eav5UD96V6mUVRU1Ov40WvKV61axdNPP01xcXHPcofCwkJg4D0WL7/8MitWrCAuLg63282FF17Izp07e43pXj60b9++nk+qk5KSuPbaa2lraxvyNeqPzWbr2Ytw9PPqb+y3vvUt3n33Xf7xj38ENf+ll17KrFmzuPvuu/tdQjWYd999F8Mw+Ne//tVz7O2338YwjD5vws4991xOOumknu+P3GOxdu1aTjzxRACuvfbanr+To/8OduzYwRlnnEFsbCy5ubn84Ac/CDpWl8vFxRdfzJ/+9Kdex//85z+TnJzM6tWr+1wz0D6Qa665pufnpT9r1qzhK1/5CgBTp07teT7df39H77Hwer3cddddzJw5E5fLRWpqKqeddhovvPBCr3l37drFJZdcQnp6OjExMcyePZtvfvObPeeLi4v57Gc/y+zZs4mJiSE1NZWPf/zjQ/7cdHvzzTc555xzSEpKIjY2lpUrV7Ju3bqgrj1aML8vA72O3b9HR+peyvfYY48xf/58nE4n//3vf3vOHf3pf2lpKddddx2ZmZk4nU7mz5/Pb3/7215juv9d+Mtf/sK3vvUtcnNziY2NpampqWfMTTfdRHJyctB3F5599tme552QkMD555/P9u3bez3nBx98sCfu7i8RGRndsRCZZAoKCtiwYQPbtm0bcsnEDTfcwKOPPsrHPvYxvvzlL/Pmm29y7733snPnzqDfMA/mm9/8Jo2NjZSUlPCjH/0IYND10i+++CLnnnsu06ZNY82aNbS3t/Ozn/2MU089lc2bN/d5c3TJJZcwdepU7r33XjZv3szDDz9MRkYG3//+94cV7/79+wFITU0dcuxll13GPffcw913381HPvKRId+02O12vvWtb3HVVVeFfNfiuOOOw+1289prr/HhD38YgNdffx2bzcbWrVtpamoiMTGRQCDA+vXr+eQnP9nvPHPnzuXuu+/mjjvu4JOf/CQrVqwA4JRTTukZU19fzznnnMPFF1/MJZdcwhNPPMHXvvY1FixYwLnnnhtUvJdddhkf/OAH2b9/P9OnTwesJXEf+9jHwrr07eKLL2bPnj38+c9/5kc/+hFpaWkApKen9zt+zZo13Hvvvdxwww0sW7aMpqYmNm3axObNmzn77LMBK4lbsWIFDoeDT37ykxQWFrJ//37+/e9/853vfAeAjRs3sn79ei699FKmTJlCUVERv/jFL1i1ahU7duwgNjZ2wJhffvllzj33XJYuXcqdd96JzWbjd7/7HWeeeSavv/46y5Yt6zW+sbGxz/6b7ucZ6u9LsF5++WX++te/8vnPf560tLQB56msrOTkk0/uSUbS09N59tlnuf7662lqauqz/PGee+4hOjqaW2+9FY/H0+uORWJiIl/84he54447hrxr8Yc//IGrr76a1atX8/3vf5+2tjZ+8YtfcNppp/HOO+9QWFjIpz71KcrKynjhhRf4wx/+MKzXQUT6YYrIpPL888+bdrvdtNvt5vLly82vfvWr5nPPPWd2dnb2GrdlyxYTMG+44YZex2+99VYTMF9++eWeYytXrjRXrlzZ8/3vfvc7EzAPHjzY69pXXnnFBMxXXnml59j5559vFhQU9Inz4MGDJmD+7ne/6zm2ePFiMyMjw6ytre05tnXrVtNms5lXXXVVz7E777zTBMzrrruu15wf+chHzNTU1IFemh5XX321GRcXZ1ZXV5vV1dXmvn37zO9+97umYRjmwoUL+zxOdXV1n2tN0zQfffRREzD//ve/95wHzM997nN9nud9991n+nw+c+bMmeaiRYvMQCAw4GP05/zzzzeXLVvW8/3FF19sXnzxxabdbjefffZZ0zRNc/PmzSZgPvXUUz3jjv6727hxY5/X/cixgPn73/++55jH4zGzsrLMj370o4PGZ5qmWVBQYJ5//vmmz+czs7KyzHvuucc0TdPcsWOHCZivvvpqz8/Oxo0bB4yx29VXX93nZwcw77zzzp7v77vvvn5/Frvjufrqq3u+X7RokXn++ecP+hxOP/10MyEhwSwuLu51vPvvyzRNs62trc91GzZs6PPaHf37EAgEzJkzZ5qrV6/uM9/UqVPNs88+u+dY9+vU31e3YH9f+nsdTfP9n70jAabNZjO3b9/eZ/zRr/31119vZmdnmzU1Nb3GXXrppWZSUlLP69T9OkybNq3Pa9d97m9/+5vZ0NBgJicnmx/+8Id7xd79+2aaptnc3Gy63W7zxhtv7DVPRUWFmZSU1Ov45z73uT7PT0RGRkuhRCaZs88+mw0bNvDhD3+YrVu38oMf/IDVq1eTm5vbaynNM888A8CXvvSlXtd/+ctfBuDpp58+dkED5eXlbNmyhWuuuYaUlJSe4wsXLuTss8/uifdIn/70p3t9v2LFCmpra3stsRhIa2sr6enppKenM2PGDL7xjW+wfPnykO7UXH755cycOTPo5U3ddy22bt3KP//5z6AfB6zntnnzZlpbWwF44403OO+881i8eDGvv/46YN3FMAyD0047LaS5jxQfH99r70l0dDTLli3jwIEDQc9ht9u55JJL+POf/wxYm7bz8vJ67pBEitvtZvv27ezdu7ff89XV1bz22mtcd9115Ofn9zp35B2pmJiYnj97vV5qa2uZMWMGbrebzZs3D/j4W7ZsYe/evVx22WXU1tZSU1NDTU0Nra2tfOADH+C1114jEAj0uubBBx/khRde6PUFw/t9CdbKlSuZN2/eoGNM0+TJJ5/kggsuwDTNnudSU1PD6tWraWxs7PNaXH311b1eu6MlJSVxyy238K9//Yt33nmn3zEvvPACDQ0NfOITn+j1mHa7nZNOOolXXnkl9CcsIkFTYiEyCZ144on8/e9/p76+nrfeeovbbruN5uZmPvaxj7Fjxw7AWidus9mYMWNGr2uzsrJwu90UFxcf05i7H2/27Nl9zs2dO7fnDdiRjn7zl5ycDFjLeYbicrl63qi99tprHD58mHXr1jFt2rSgY+5OFLZs2RJ0onD55ZczY8aMkPdarFixAp/Px4YNG9i9ezdVVVWsWLGC008/vVdiMW/evF5vNEM1ZcqUPsu6kpOTg3pNj3TZZZexY8cOtm7dyp/+9CcuvfTSiK9xv/vuu2loaGDWrFksWLCAr3zlK7z77rs957uTp6GWELa3t3PHHXeQl5eH0+kkLS2N9PR0GhoaaGxsHPC67oTm6quv7klqu78efvhhPB5Pn+uXLVvGWWed1esLhvf7Eqyjq1D1p7q6moaGBn71q1/1eS7XXnst0LdYRDDzfuELX8Dtdg+416L7NTzzzDP7PO7zzz8/pgpUiExE2mMhMolFR0dz4okncuKJJzJr1iyuvfZa/va3v3HnnXf2jBnOm72BrvH7/cOOdTjsdnu/x4O9ezBQv4VQXH755T17LS666KKgHvdb3/oW11xzDU899VTQj3PCCSfgcrl47bXXyM/PJyMjg1mzZrFixQp+/vOf4/F4eqoujcRIXtMjnXTSSUyfPp1bbrmFgwcPctlllw041jCMfucP98/T6aefzv79+3nqqad4/vnnefjhh/nRj37EQw89xA033BD0PDfddBO/+93vuOWWW1i+fDlJSUkYhsGll17a547DkbrP3XfffQOW+h1uz4bBhPr7OthdhW7dz+WKK67g6quv7nfMwoULQ563+67FmjVr+r1r0f24f/jDH/qUMwZGtRyuiCixEJEu3SUry8vLAWuTdyAQYO/evcydO7dnXGVlJQ0NDRQUFAw4V/edgaObkvV3lyPYxKX78Xbv3t3n3K5du0hLSyMuLi6ouY6l4SQKV1xxBd/+9re56667ejZjD6V7SdLrr79Ofn5+z7KiFStW4PF4eOyxx6isrOT0008fdJ5jedfgE5/4BN/+9reZO3fuoD0zkpOT+11qFcxds1CfT0pKCtdeey3XXnstLS0tnH766axZs4Ybbrih527Vtm3bBp3jiSee4Oqrr+b+++/vOdbR0TFkk77ujeyJiYkjTmpD+X1JTk7uN7aR3JVMT08nISEBv98flgT9SLfccgs//vGPueuuu/pUt+t+DTMyMoZ83EjfIROZiLQUSmSSeeWVV/r99Ld7zXX30onzzjsPoE9X7B/+8IcAnH/++QM+Rvf/3F977bWeY36/n1/96ld9xsbFxQ26PKRbdnY2ixcv5tFHH+31Jmjbtm08//zzPfGORVdccQUzZszgrrvuCmr8kUuojtz3MpQVK1bw5ptv8sorr/QkFmlpacydO7enEtZQ+xi632wei07VN9xwA3feeWevN+D9mT59Ort27aK6urrn2NatW4MqwRrK86mtre31fXx8PDNmzOgpr5yens7pp5/Ob3/7Ww4dOtRr7JG/U3a7vc/v2M9+9rMh77AsXbqU6dOn83//93+0tLT0OX/k8x9KKL8v06dPp7Gxsdeyr/Ly8hFVfrPb7Xz0ox/lySef7DcRC+W5HK37rsVTTz3Vp0P86tWrSUxM5Lvf/S5er3fQxz2WP+sik4XuWIhMMjfddBNtbW185CMfYc6cOXR2drJ+/Xoef/xxCgsLe9Y/L1q0iKuvvppf/epXNDQ0sHLlSt566y0effRRLrroIs4444wBH2P+/PmcfPLJ3HbbbdTV1ZGSksJf/vIXfD5fn7FLly7l8ccf50tf+hInnngi8fHxXHDBBf3Oe99993HuueeyfPlyrr/++p7ymUlJSWO6e67dbueb3/xmz2sbjO4lVEe/cRrMihUr+M53vsPhw4d7JRCnn346v/zlLyksLGTKlCmDzjF9+nTcbjcPPfQQCQkJxMXFcdJJJwW1/j1UBQUFQf29XXfddfzwhz9k9erVXH/99VRVVfHQQw8xf/78ITfiL126FLBKG1966aU4HA4uuOCCfu9uzZs3j1WrVrF06VJSUlLYtGkTTzzxBJ///Od7xvz0pz/ltNNOY8mSJXzyk59k6tSpFBUV8fTTT/f8XX3oQx/iD3/4A0lJScybN48NGzbw4osvDlmm2Gaz8fDDD3Puuecyf/58rr32WnJzcyktLeWVV14hMTExpM7Twf6+XHrppXzta1/jIx/5CDfffHNPedZZs2YNutl8KN/73vd45ZVXOOmkk7jxxhuZN28edXV1bN68mRdffJG6urphz/2FL3yBH/3oR2zdurXX32ViYiK/+MUvuPLKK1myZAmXXnop6enpHDp0iKeffppTTz2VBx54AHj/Z+Pmm29m9erV2O12Lr300mHHJCKozprIZPPss8+a1113nTlnzhwzPj7ejI6ONmfMmGHedNNNZmVlZa+xXq/XvOuuu8ypU6eaDofDzMvLM2+77Tazo6Oj17j+yoHu37/fPOuss0yn02lmZmaa3/jGN8wXXnihT7nZlpYW87LLLjPdbrcJ9JS97K/crGma5osvvmieeuqpZkxMjJmYmGhecMEF5o4dO3qNGahE60BlcI92dAnLgQxVbvZIXq/XnD59+qDlZo92ZEnRocrNmqZpNjU1mXa73UxISDB9Pl/P8T/+8Y8mYF555ZV9runv7+6pp54y582bZ0ZFRfX6O1i5cqU5f/78PnMMVK70aN3lZgfTX7nZ7ucwbdo0Mzo62ly8eLH53HPPBVVu1jRN85577jFzc3NNm83W6+//6HKz3/72t81ly5aZbrfbjImJMefMmWN+5zvf6VOKedu2beZHPvIR0+12my6Xy5w9e7Z5++2395yvr683r732WjMtLc2Mj483V69ebe7atavP4/VXftk0TfOdd94xL774YjM1NdV0Op1mQUGBeckll5gvvfTSkK/T0YL5fTFNqwz1cccdZ0ZHR5uzZ882//jHPw5YbvbIn9+jzx392ldWVpqf+9znzLy8PNPhcJhZWVnmBz7wAfNXv/pVn9fhb3/7W585BzvXHV9/v2+vvPKKuXr1ajMpKcl0uVzm9OnTzWuuucbctGlTzxifz2fedNNNZnp6umkYhkrPioSBYZoh7rgTERERERE5ivZYiIiIiIjIiCmxEBERERGREVNiISIiIiIiI6bEQkRERERERkyJhYiIiIiIjJgSCxERERERGbEJ1yAvEAhQVlZGQkIChmFEOhwRERERkXHLNE2am5vJycnBZhv8nsSESyzKysrIy8uLdBgiIiIiIhPG4cOHmTJlyqBjJlxikZCQAFhPPjExMcLRiIiIiIiMX01NTeTl5fW8xx7MhEssupc/JSYmKrEQEREREQmDYLYYaPO2iIiIiIiMmBILEREREREZMSUWIiIiIiIyYhNuj4WIiIhMTH6/H6/XG+kwRCYUh8OB3W4Py1xKLERERGRMM02TiooKGhoaIh2KyITkdrvJysoacQ84JRYiIiIypnUnFRkZGcTGxqoBrkiYmKZJW1sbVVVVAGRnZ49oPiUWIiIiMmb5/f6epCI1NTXS4YhMODExMQBUVVWRkZExomVR2rwtIiIiY1b3norY2NgIRyIycXX/fo10D5MSCxERERnztPxJZPSE6/dLiYWIiIiIiIyYEgsRERGRSWzVqlXccsstkQ5j1K1Zs4bFixcfs8d75JFHcLvdI55n7dq1GIYxLqqiKbEQERERGQXXXHMNhmHwve99r9fxf/7zn+NqadcjjzyCYRicc845vY43NDRgGAZr164Neq5rrrmGiy66KLwBTiD9JXmnnHIK5eXlJCUlRSaoECixEBERERklLpeL73//+9TX1x/zxw5nM8GoqChefPFFXnnllbDNeayYponP54t0GMMWHR0dlh4Tx4ISCxEREZFRctZZZ5GVlcW999476Lg33niDFStWEBMTQ15eHjfffDOtra095w3D4J///Geva9xuN4888ggARUVFGIbB448/zsqVK3G5XDz22GPU1tbyiU98gtzcXGJjY1mwYAF//vOfQ34ecXFxXHfddXz9618fdNzhw4e55JJLcLvdpKSkcOGFF1JUVARYS5EeffRRnnrqKQzD6Lnb8bGPfYzPf/7zPXPccsstGIbBrl27AOjs7CQuLo4XX3wRAI/Hw80330xGRgYul4vTTjuNjRs39lzfvXTo2WefZenSpTidTt54440+se7fv59p06bx+c9/HtM0+5w3TZM1a9aQn5+P0+kkJyeHm2++ued8fX09V111FcnJycTGxnLuueeyd+/eAV+b/u7W3HLLLaxatarn/KuvvspPfvKTntenqKio36VQTz75JPPnz8fpdFJYWMj999/fa97CwkK++93vct1115GQkEB+fj6/+tWvBowtXJRYiIiIyLhimiZtnb6IfPX3BnQwdrud7373u/zsZz+jpKSk3zH79+/nnHPO4aMf/Sjvvvsujz/+OG+88UavN9vB+vrXv84XvvAFdu7cyerVq+no6GDp0qU8/fTTbNu2jU9+8pNceeWVvPXWWyHPvWbNGt577z2eeOKJfs97vV5Wr15NQkICr7/+OuvWrSM+Pp5zzjmHzs5Obr31Vi655BLOOeccysvLKS8v55RTTmHlypW9llO9+uqrpKWl9RzbuHEjXq+XU045BYCvfvWrPPnkkzz66KNs3ryZGTNmsHr1aurq6vq8Ft/73vfYuXMnCxcu7HXu3Xff5bTTTuOyyy7jgQce6PduwJNPPsmPfvQjfvnLX7J3717++c9/smDBgp7z11xzDZs2beJf//oXGzZswDRNzjvvvGHfKfrJT37C8uXLufHGG3ten7y8vD7j3n77bS655BIuvfRS3nvvPdasWcPtt9/ek2R2u//++znhhBN45513+OxnP8tnPvMZdu/ePazYgqUGeSIiIjKutHv9zLvjuYg89o67VxMbHdrbp4985CMsXryYO++8k9/85jd9zt97771cfvnlPWvrZ86cyU9/+lNWrlzJL37xC1wuV9CPdcstt3DxxRf3Onbrrbf2/Pmmm27iueee469//SvLli0L6Xnk5OTwhS98gW9+85v97pN4/PHHCQQCPPzwwz1v1H/3u9/hdrtZu3YtH/zgB4mJicHj8ZCVldVz3apVq/jCF75AdXU1UVFR7Nixg9tvv521a9fy6U9/mrVr13LiiScSGxtLa2srv/jFL3jkkUc499xzAfj1r3/NCy+8wG9+8xu+8pWv9Mx79913c/bZZ/eJc/369XzoQx/im9/8Jl/+8pcHfL6HDh0iKyuLs846C4fDQX5+fs9rtnfvXv71r3+xbt26noTnscceIy8vj3/+8598/OMfD+m1BUhKSiI6OprY2Nher8/RfvjDH/KBD3yA22+/HYBZs2axY8cO7rvvPq655pqeceeddx6f/exnAfja177Gj370I1555RVmz54dcmzB0h0LERERkVH2/e9/n0cffZSdO3f2Obd161YeeeQR4uPje75Wr15NIBDg4MGDIT3OCSec0Ot7v9/PPffcw4IFC0hJSSE+Pp7nnnuOQ4cODet5fO1rX6O6uprf/va3/T6Pffv2kZCQ0PM8UlJS6OjoYP/+/QPOedxxx5GSksKrr77K66+/zvHHH8+HPvQhXn31VcC6g9G9XGj//v14vV5OPfXUnusdDgfLli3r89oe/VqAlSycffbZ3HHHHYMmFQAf//jHaW9vZ9q0adx444384x//6NmrsXPnTqKiojjppJN6xqempjJ79ux+/47DaefOnb2eP8Cpp57K3r178fv9PceOvEtjGAZZWVlUVVWNamy6YyEiIiLjSozDzo67V0fssYfj9NNPZ/Xq1dx22229PlUGaGlp4VOf+lSv9fvd8vPzAeuN4dHLsPpbchMXF9fr+/vuu4+f/OQn/PjHP2bBggXExcVxyy230NnZOazn4Xa7ue2227jrrrv40Ic+1Od5LF26lMcee6zPdenp6QPOaRgGp59+OmvXrsXpdLJq1SoWLlyIx+Nh27ZtrF+/vtddl2Ad/Vp0x5GTk8Of//xnrrvuOhITEwe8Pi8vj927d/Piiy/ywgsv8NnPfpb77ruvJ+EJlc1mC+rvMFwcDkev7w3DIBAIjNrjgRILERERGWcMwwh5OdJY8L3vfY/Fixf3WYqyZMkSduzYwYwZMwa8Nj09nfLy8p7v9+7dS1tb25CPuW7dOi688EKuuOIKAAKBAHv27GHevHnDfBbWcqqf/vSn/OQnP+l1fMmSJTz++ONkZGQM+IY9Ojq616fq3VauXMmvf/1rnE4n3/nOd7DZbJx++uncd999eDyenk/op0+fTnR0NOvWraOgoACw3pxv3LgxqF4cMTEx/Oc//+G8885j9erVPP/88yQkJAw6/oILLuCCCy7gc5/7HHPmzOG9995j7ty5+Hw+3nzzzZ6lULW1tezevXvA1zY9PZ1t27b1OrZly5ZeCcBAr8+R5s6dy7p163odW7duHbNmzcJuH17iGy5aCiUiIiJyDCxYsIDLL7+cn/70p72Of+1rX2P9+vV8/vOfZ8uWLezdu5ennnqq1+btM888kwceeIB33nmHTZs28elPf7rPJ9L9mTlzJi+88ALr169n586dfOpTn6KysnJEz8PlcnHXXXf1eR6XX345aWlpXHjhhbz++uscPHiQtWvXcvPNN/dsXC8sLOTdd99l9+7d1NTU9Hxiv2rVKnbs2MH27ds57bTTeo499thjnHDCCT13H+Li4vjMZz7DV77yFf773/+yY8cObrzxRtra2rj++uuDij8uLo6nn36aqKgozj33XFpaWvod98gjj/Cb3/yGbdu2ceDAAf74xz8SExNDQUEBM2fO5MILL+TGG2/kjTfeYOvWrVxxxRXk5uZy4YUX9jvfmWeeyaZNm/j973/P3r17ufPOO/skGoWFhbz55psUFRVRU1PT7x2GL3/5y7z00kvcc8897Nmzh0cffZQHHnhgWHd1wk2JhYiIiMgxcvfdd/d5s7hw4UJeffVV9uzZw4oVKzj++OO54447yMnJ6Rlz//33k5eXx4oVK7jsssu49dZbiY2NHfLxvvWtb7FkyRJWr17NqlWryMrKCkuDuquvvppp06b1OhYbG8trr71Gfn4+F198MXPnzuX666+no6Oj5w7GjTfeyOzZsznhhBNIT0/v+eR9wYIFuN1uFi9eTHx8PGAlFn6/v2d/Rbfvfe97fPSjH+XKK69kyZIl7Nu3j+eee47k5OSg44+Pj+fZZ5/FNE3OP//8XqV9u7ndbn79619z6qmnsnDhQl588UX+/e9/k5qaClgb05cuXcqHPvQhli9fjmmaPPPMMwMmfKtXr+b222/nq1/9KieeeCLNzc1cddVVvcbceuut2O125s2bR3p6er97YZYsWcJf//pX/vKXv3Dcccdxxx13cPfdd/dZYhcJhhlq3bQxrqmpiaSkJBobGwddNyciIiJjX0dHBwcPHmTq1KkhVUcSkeAN9nsWyntr3bEQEREREZERU2IhIiIiIiIjpsRCRERERERGTImFiIiIiIiMmBILEREREREZMSUWIiIiIiIyYkosRERERERkxJRYiEwS/oBJh9cf6TBERERkglJiITIJtHh8XPHzF7no23+iorEj0uGIiIjIBKTEQmSC6/QF+Pqjz/ODqs/wL77A6//7X6RDEhGRcWLt2rUYhkFDQ8OI5ikqKsIwDLZs2RKWuGRsUmIhMoGZpskdf93AZ0q+Tp6tmmjDT2Db3yMdlojIhGcYxqBfa9asiXSIo+aaa67hoosu6nUsLy+P8vJyjjvuuMgEJcdEVKQDEJHR89Tmg5y/86vMtxdjYmBgMrvxDRrbvCTFOiIdnojIhFVeXt7z58cff5w77riD3bt39xyLj4/v+bNpmvj9fqKiJu7bMrvdTlZWVqTDkFGmOxYiE5h/0x9ZYd9Gpy0G47LHAVhs28/6rdsjHJmIyMSWlZXV85WUlIRhGD3f79q1i4SEBJ599lmWLl2K0+nkjTfe6PeT/ltuuYVVq1b1fB8IBLj33nuZOnUqMTExLFq0iCeeeGLQWH7+858zc+ZMXC4XmZmZfOxjH+s55/F4uPnmm8nIyMDlcnHaaaexcePGAedas2YNixcv7nXsxz/+MYWFhT3nH330UZ566qmeuzNr167tdynUq6++yrJly3A6nWRnZ/P1r38dn8/Xc37VqlXcfPPNfPWrXyUlJYWsrKwJfadnIpi4qbGIkFz7NgCHZl/PjFmrKYs/jpyWbdS/8xQsXxzZ4EREhss0wdsWmcd2xIJhhGWqr3/96/zf//0f06ZNIzk5Oahr7r33Xv74xz/y0EMPMXPmTF577TWuuOIK0tPTWblyZZ/xmzZt4uabb+YPf/gDp5xyCnV1dbz++us957/61a/y5JNP8uijj1JQUMAPfvADVq9ezb59+0hJSQn5Od16663s3LmTpqYmfve73wGQkpJCWVlZr3GlpaWcd955XHPNNfz+979n165d3Hjjjbhcrl7Jw6OPPsqXvvQl3nzzTTZs2MA111zDqaeeytlnnx1ybDL6lFiITFAdXj/5nr1ggHvWydbB2efC29vIrVxLp+92oqN001JExiFvG3w3JzKP/Y0yiI4Ly1R33313SG+QPR4P3/3ud3nxxRdZvnw5ANOmTeONN97gl7/8Zb+JxaFDh4iLi+NDH/oQCQkJFBQUcPzxxwPQ2trKL37xCx555BHOPfdcAH7961/zwgsv8Jvf/IavfOUrIT+n+Ph4YmJi8Hg8gy59+vnPf05eXh4PPPAAhmEwZ84cysrK+NrXvsYdd9yBzWb9/2nhwoXceeedAMycOZMHHniAl156SYnFGKV3FSIT1N6SSqZhfUKUOuNEALJOvBiAk3mPt/YcjlhsIiICJ5xwQkjj9+3bR1tbG2effTbx8fE9X7///e/Zv39/v9ecffbZFBQUMG3aNK688koee+wx2tqsuz379+/H6/Vy6qmn9ox3OBwsW7aMnTt3Dv+JBWHnzp0sX74c44i7P6eeeiotLS2UlJT0HFu4cGGv67Kzs6mqqhrV2GT4dMdCZIIq372JBYZJvS2F5ATrUyNb5lxqo3NI7Szj8Mb/wLzPRThKEZFhcMRadw4i9dhhEhfX+86HzWbDNM1ex7xeb8+fW1paAHj66afJzc3tNc7pdPb7GAkJCWzevJm1a9fy/PPPc8cdd7BmzZpB91EMZqgYw83h6F1oxDAMAoHAqD2ejIzuWIhE2Lp9Ndz33C46feH9h7Lj8GYAahPnvn/QMGgp+CAAqSUvhvXxuq3dXcW/t0bof/giMjkYhrUcKRJfYdpf0Z/09PRe1aSAXpud582bh9Pp5NChQ8yYMaPXV15e3oDzRkVFcdZZZ/GDH/yAd999l6KiIl5++WWmT59OdHQ069at6xnr9XrZuHEj8+bNGzDGioqKXsnF0b0poqOj8fv9gz7XuXPnsmHDhl7zrFu3joSEBKZMmTLotTJ2KbEQiaCntpTywO8ewfH693lqc1FY546t2QaAmbWo9/H55wAwu3M7Pn94k5l1e6s4+IfP433iRvaU14d1bhGRie7MM89k06ZN/P73v2fv3r3ceeedbNu2red8QkICt956K1/84hd59NFH2b9/P5s3b+ZnP/sZjz76aL9z/uc//+GnP/0pW7Zsobi4mN///vcEAgFmz55NXFwcn/nMZ/jKV77Cf//7X3bs2MGNN95IW1sb119/fb/zrVq1iurqan7wgx+wf/9+HnzwQZ599tleYwoLC3n33XfZvXs3NTU1/d7R+OxnP8vhw4e56aab2LVrF0899RR33nknX/rSl3r2V8j4o785kQj5y1uHeOFvv+D3Ud/llqi/07Lxz2Gb2+sPkNuxB4Ck6b3X8KZOXQzAFKo4XNMQtscsbWhny59u59qo57jY/gbb1z0dtrlFRCaD1atXc/vtt/PVr36VE088kebmZq666qpeY+655x5uv/127r33XubOncs555zD008/zdSpU/ud0+128/e//50zzzyTuXPn8tBDD/HnP/+Z+fPnA/C9732Pj370o1x55ZUsWbKEffv28dxzzw1YpWru3Ln8/Oc/58EHH2TRokW89dZb3Hrrrb3G3HjjjcyePZsTTjiB9PT0XndEuuXm5vLMM8/w1ltvsWjRIj796U9z/fXX861vfWs4L52MEYZ59EK5ca6pqYmkpCQaGxtJTEyMdDgi/Xq7uI6//Opevhf1a+yG9Sv4vLmM07/1X1wO+4jn33moihm/mYPD8GPesg3DfcQtctOk7a5sYmnnf+c8w8knnzrwREHq8Pr53s9+xh2Na7B1PZ//OM/nQ7f9acRzi8jk1tHRwcGDB5k6dSoulyvS4YhMSIP9noXy3lp3LEQiYM+ml7nP8Svshok57QwATmUrb+4Jz96Ekj1v4zD8NNmSMJKOWqtqGFQ5CwBoKglPo7wnXlzPLY0/wGaYtKceB8AJHes5XNsSlvlFRERk7FNiIRIBcYfWAnA47XSMK/5OU1QqcYaHg5v+G5b5O4qtxnjV8XP63WjYlmjdMg9U7w3L46Vvfxi30Up14nxibnyWNiOWLKOed/73cljmFxERkbFPiYVIBCQ37QDAnH4G2Gy05J8FQHzxi33K+A2Hs2vjtj9zQb/njbSZALga+697HgrTNMluse58tC35JLgSqchYAUBgx79HPL+IiIiMD0osRI6xquYOZgYOAJAx6yQA0pZeCMBy/0a2lzaOaH5/wCS7bTcACVP7b74Ul2OVoE3tODSixwIorWtmllkEQNYcqxOse8lHAFjY/Do1zR0jfgwREREZ+5RYiBxje/YfIMuoJ4CBa4pVCjZ65hl0Gk5yjVq2bHpjRPOX1TYxCyth6E5cjpY21bqTUWCW0tDqGdHjFe3cjMvw0kYMzgzrTkjKovPxEsU0WzlvvbVhRPOLiABhuZsrIv0L1++XEguRY6xun9XttDp6CjjjrYPRsVSnW5/2m7tHts+i8vBenIaPDqKxpxT2OyY2cyYBDBKNNooPF4/o8ZoOWM+nPG4OdNcedyVSmmIlNZ3b/zWi+UVkcuvuvNzW1hbhSEQmru7fr6M7nYcqKhzBiEjwAmVbAWhOnk/mEcdjF5wPL61lQet6vP4ADvvw8v6mMmsZVI0jhykDNRlyuKi2Z5HpL6eueBvMmTWsxwKIrrKejyej934O34xz4K115DduGvbcIiJ2ux23201VVRUAsbGxGKPY/VpkMjFNk7a2NqqqqnC73djtIyt5r8RC5BhLarQ2bkflHt/ruHv+2fASzDOKKK5uZEZW/82JhuKttvZvtMTmDTquMa6QzKZyPOW7hvU4YP2DlNFiXR9f2Hs/R9LUJfAWZPtK8PkDRA0zURIRycrKAuhJLkQkvNxud8/v2UgosRA5hhrbvEzz7gcbpM06sdc5w11AB05chofygzuYkTW8xnX2hoMA+JIKBx3ndU+Hpg3Y6/cN63EASmqarI3bBmTNXd7rXGr+PACyjTqKq2opyE4f9uOIyORmGAbZ2dlkZGTg9XojHY7IhOJwOEZ8p6KbEguRY2jXwUOcZLM+cYsvWNL7pM1GtauQvI7dNB3aDsuHl1jEtx4GwJE+fdBx0Vlz4BAkthQN63EAinZtJs/w0mrEEpc2o9c5W1wKjUYCSWYzlUU7KMheOezHEREBa1lUuN4AiUj4aW2CyDFU1bVxuyYqC2L6LnVqS7KSgUD17mHNb5omaV6re3dizuD7JtzddxR8h/H6A8N6vOaD1vOpiJ39/sbtI9Q6reVYzWXDX24lIiIi44MSC5FjyFdibXRudM/r97wtYw4AcU3DW55U3dzOFCoBSM2bM+jY1PzjAJhCNSVVdcN6PEfluwB4Mhb1e74tIbwdvkVERGTsUmIhcgzF11sdqm05i/s9n5hnvdnP9BThD4ReU7r88EFchhcfdqJTCwYda0vIoMWIw2aYlBftDPmxTNMks9W6EzFQIz5SreVRzsaDIc8vIiIi44sSC5FjxOsPUNhp3YlInt7/G/G0qdYn/9Moo6SuJeTHqC/ZA0CNPQPsQ2yhMgyqnfkAtJXuCPmxSmqamN3VcTtzzvJ+x8RkzwYgpWNkvTJERERk7FNiIXKMlNU1M9UoByCpcHG/Y+wphXQSRYzRScnB0PdZeKqsxKUpZvBSs93a4gsBCNTuD/mxyg9uw2l4aSWW6AE2iqd37ePIC5TS5lElFxERkYlsVBOL1157jQsuuICcnBwMw+Cf//znkNesXbuWJUuW4HQ6mTFjBo888shohihyzFSVHCDKCNCJAyMhu/9B9iiqo627CI2HtoX8GLauUrOdSYMvg+pmJhcCEN0U+h2F5hJr+VSVMx8GaFaVmGvdsUgy2jhcWhryY4iIiMj4MaqJRWtrK4sWLeLBBx8MavzBgwc5//zzOeOMM9iyZQu33HILN9xwA88999xohilyTDSXW3cTaqOy+q2g1K010fr0318ZeiWlmJZDAESlTgtqvDPD2gOR2B76m35/tbXsqi2hcOBB0bFU2az+FbXF20N+DBERERk/RrWPxbnnnsu5554b9PiHHnqIqVOncv/99wMwd+5c3njjDX70ox+xevXq0QpT5Jjw1Fh3E1picgcfmDEHal4gtjH0SkopHitBiM2aGdR4d65VkjbTXx5yd2xXo9Xh20wd/LHqY/LJaK2mrXw3cH7Q84uIiMj4Mqb2WGzYsIGzzjqr17HVq1ezYcOGAa/xeDw0NTX1+hIZi4wGa7mRN3Hw/Q8JU+YDkNZRhGkGXxmqsa2TKWaFdW3+3KCuSZ1iLVXKppby2sagHwsgud26OxLbtUF7IJ7ErrsntcPv8C0iIiJj35hKLCoqKsjMzOx1LDMzk6amJtrb2/u95t577yUpKannKy8vuE2rIsdaTGsJALaUwkHHpU1dCMA0Silv6P/nvj+lZWUkGm0AxGYO3nW7my0hg3Zc2AyTqsPB3yFp6/QxJWDdHUkrnD/oWHu6dUcjdgQdvkVERGTsG1OJxXDcdtttNDY29nwdPnw40iGJ9MvtsTpix2YMvv/BkT4TPzYSjHYOFQf/KX9dibUno9aWCo6Y4C4yDGoc1kby5rI9QT/WoZISkg2rHG5izuCN+BK6zqd7DgU9v4iIiIw/YyqxyMrKorKystexyspKEhMTiYnp/42S0+kkMTGx15fIWNPW6SPbrAIgecoQ+x+ioqlyTAGgofi94B+jwrrj0OCaElJsLbHWXb7OmgNBX1NTZG3ErralQ3TsoGPTp1olZ/PNCupbOkKKTURERMaPMZVYLF++nJdeeqnXsRdeeIHly/tvviUyXpRW15FhNACQEMQypeYEa4wvhMpQZp21ObwjPj+k2HxJhQDYG4qCvqa93IqrPmbosrYxaVPxEoXT8FJSHPxdERERERlfRjWxaGlpYcuWLWzZsgWwyslu2bKFQ4esJRG33XYbV111Vc/4T3/60xw4cICvfvWr7Nq1i5///Of89a9/5Ytf/OJohiky6mpKrLsJrUYsxCQPOT7QVWnJ2RD8UihnVy8KW+rUkGKLSrOWZsW3Bb+M0OjaiO1JCuKx7FFURVnLrRpLQi+hKyIiIuPDqCYWmzZt4vjjj+f4448H4Etf+hLHH388d9xxBwDl5eU9SQbA1KlTefrpp3nhhRdYtGgR999/Pw8//LBKzUpEbNhfy3ee3kFTx8g7RreUW52t6xzZAzaTO1JMtlXVKbk9+MZ1yR1WYhA3RJWmoyXmWElMamdZ0FWo4lqsuyNR6bOCGt/kskrsertK7obDK7uqWLevJmzziYiIyMiMah+LVatWDfpGpb+u2qtWreKdd94ZxahEBuf1B/jhC3v416tvsszYyWOuq/nMB4Ir3zoQX10RAG2xQ/Sw6JI6dT68BvmBUpo6vCS6HIOOb+rwMsUsAwNSC+aFFFtanpWITKGS+lYPKfGuQcebpkmapwQMSJgy+Mbtbp74KdACZkN4iiu8seMQUX/+BG2Gi5qv/Ie0hCA3q4uIiMioGVN7LEQircPr5xO/+h+HXnuMZ6O/xo+if4Gx5Y8jntfeaN2Z8ycFt/8hvuuORYbRQFFp+ZDjD5eUkmo0AxCXFdxdhG7OtEJ82HAZXkpLioYcX93URj5Wv4z0wuOCegyb23rerq6SuyPR0NZJ2RNfZYV9G2fbNrHpjRdGPKeIiIiMnBILkSO8vLOSi0r/jwejf0qiYfWQmNv4GrUtnhHNG9tm9XyICnb/gyuROlsKALVF24YcXntoh/VfWxo440MLzu6g1p4BQEPJ7iGHlxbtwWl48eDAmTr05m0AZ3ohAAkdFaHFdhTTNPnjY7/lksCzPccC2/4+ojlFREQkPJRYiByhafvzXBH1EgEMOP4KAE42dvD69qJhz2maJimd1l2H+KzgGtcBNHRVXOquwDSYtgqr2lJ9TGgVobo1dpWo7ajaP3Rch3cCUO3IBZs9qPnd2TMASPdXEggE3038aM9t3MHHS+4FoNFtLfk6vuVVqprahj2niIiIhIcSC5EjOMrfBqA45zz48AM0OHNxGj4qtzw7xJUDa2z3kovVnyV1qB4WR/C4rTfj3RWYBlVrJQSdXaVjQ+VJ6EpI6obeXO2ttO5qNMcFd7cCICXXSqgyqKemsTn0ALu9dh+ZRgO1MYUkfeoZWo1Yso06Nr/x3PDnFBERkbBQYiHSxTRNUpqsT+Od+UvBMPDOsCqSpZetpdMXGNa8peUVJBnWJ+rO1MKgr4vKtPZKxDcP3bgutrkIAFta8InLkbpL1Ma0DN0dO6rBisefHPzdF0diJh6isRkmVaXBN+I7kmmaTG3ZDEDLKV+DmGTKMs8AILDtH8OaU0RERMJHiYVIl9KGdmab1if/abNOAiD1+A8DsILNbDw4vNKm9WVWD4tGIymk/Q/uKdZSn0zvYfyDLB+yqjRZ1ZYSc4Or0nS0mEzr7ojbUzrk2MRW666GKyuEsraGQU3XPo6miuElFocqaphuWs8ze/4KAJJP/H8ALG19lapGLYcSERGJJCUWIl327D9AjlFHAIPo3EUA2ApPpcMWS7rRyM63Xx3WvG2VVrJS78wJ6bqUropLBVRQUts04LiaZg8FlAGQVhhaqdlu6V0lZ7MDFbR4fAOOa+7wUui3emtkTD8+pMdoclnP31M9vF4Wh3b8jygjQJ0thehka09I2qJzaDXiyDQaePuN/w5rXhEREQkPJRYiXer2bQKgJjoPnAnWwahoGrKtT8cd+58f1ry+OuuNeHtccD0sutnd+XiIxmn4KC/aM+C40pIi4gwPfmxEp04bVowJOVZikWo0s7+oaMBxB4oOkGY0EcAgMX9BSI/R2fX8zYahl1v1p61oIwCVCfPebzIY5eRw5pkAOPc+Pax5RUREJDyUWIh0Mcu3ANCaOr/XcXfXcqgTPG8Oq+yso8lavmMmBb/ZGQCbjepo65P5xpIdAw6r7yo1WxOVBVHRIccHgDOeyijrjkL1/s0DDqvZvwWAqqgciI4N7TG6ellEtwy93Ko/sdVbAQhk9b5TEsg/FYDkliA2uYuIiMioUWIhQtfG7UbrDXr0lCW9zrnmWBu459uK2XeoLOS549utN9LR6UH2sDhCa4J1B8JXNXB/iY5K625GY+zwSs12a0iwNn53lrw34JjO0vd6jQ2FM81KrBI7Qn8Nff4A+e1W2d3kmSf1OpfU1f0701uCaQ6/lK2IiIiMjBILEaCiqYNZAWtTcfqsZb1PxqdTb08DoPrAlpDmDQRM0nxWU7jErBkhx2WmWtc4Gwbe8Gyvs/Zw+NzDWwbVLZBh7c+IqR+4b4ar65yZHvpejsRsq4pUqq8q5ARg/+ESCgzrdcyac0qvc+kF1h2mLGqpqmsIOS4REREJDyUWIsCu/UXk2aoBiJ6yuM/5hkSr9Gtn2cCf5venurmDXKx5k0PoYdEtNmcuACntRQOOiW+1zjkyZoU8/5ES8hcDkN6+v983/qZpktFuJTHxBYtDnj8l10qSMqmlvqU9pGvLd6wHoNKejS0+tde56MR0monFZpiUH9wZclwiIiISHkosRIDa/d0bt3Mhxt3nfPcn9K66obtgH6m87BCxhocABo7k0JcqpXVVhso3S6lv7exzPhAwyfBaS626lwQNV8bMpQDMMA9RVt/a53x5fWtPudfMmaFVhAJwuXPoJIooI0BlSWglZz2HrMaFtUnz+540DKqj8wBoLht4yZiIiIiMLiUWIoBZtgWAluR+3rgC8flW+dmM9n2D9pQ4WkOZtaG4zp42rI3VsdlWspBmNPHenv19zpfVt5CPtUQoNX94pWa7RadNowMnLsPL4X1978wc2rcNl+GlAyfRacE3x+ths73fy6K873MZTGLtu9Yfcpf0e76lqwu4t2rg6lkiIiIyupRYiAApjdYSGvuU/j+JT51uvaGdxWGKa1qCnrejyvpkvjHEHhY9nPFUOq03zVU7X+9z+sC+XUQbfjpxYHfnDe8xutnsVLqsDeYNRVv6nO4+VumaCjb7sB6iyZkFQHt1UdDXdHj9TO20Eoa0WSf3OyaQYiU6jsbh9cgQERGRkVNiIZOe1x9gqs9KABIK+/9E3J4+Cx92Eo02ig8G/6m4WW/1sPDED/9Nf2vmiQA4Sv7X51zFLutYrasAbCP/dW5zW3dIzMp+yttWbrficYfQcfsonjirfG4ovSz27d9HllGHH1vfjfVdnJnW/pKktuJhxyYiIiIjo8RCJr2KhjZyDWuDdWLu3P4HRUVT3XXnoL9P8wcS3WLtSTCSQ+xhcYSEWacDkN/yLh1ef69zMaXrAOjIXT7s+Y9kz7H2dCQ29t2rkNBkJVRR2ccNe34zyUqwHM2Hg76mbp/VGK88Kg+ju3HhUZLzrIQo21ca0lI1ERERCR8lFjLpVZQV4zR8+LFhSxq4O3Zrctfm6K5P7oPR3bPBNYweFt3S5lmJxXHGAbYVVfQcr272MLfDahqXtuCsYc9/pNRp1lKwPO9BPL73k5hOX4ApndYyo+Spi4c9f3RaIQBxHeVBX9NZbt09aUgYuFxveoG1vyTdaKS8smrY8YmIiMjwKbGQSa97I3GdPR3sUQOOc2R3f5of3FIorz9Aht9KBJJyQi81281ILqQ+Kg2H4efwtvf3WbyzfSczbGUEMEiYvXLY8x8pZaqVWOQbVRwoeT+JOVheSYFRCUDatNArQnVLzLL2QqR5K4LuZeGst+6eBNIGXoJlj3VTbyQBUFU8cJdyERERGT1KLGTS89QUAdDsyh50XPLU7k/zD9Dq8Q05b3ldKznUAuDOHkYVpW6GQX2qVQo2ULSh53D9jpcAqIidBTHJw5//yIeKS6XOZvWJqNj7Ts/xXVvfsh7TlowRnz7s+dPzrb0Q2dRQ3dAc1DVp7dadkrgpgy/BqnF2lZwtDa0ksIiIiISHEguRemsjsSd+yqDDEguskrPTjHL2ltUMOW1V6QEchh8vUdiShlkVqotr+mkAZDW+07OHIL7MahrXmXfaiOY+Wm2cdXel/qCVWAQCJq1b/wlAa+qCEc3tTJ5CO06ijADlRUP3nGhs81AQKAEgY/rgd0ra4guteGv2jShGERERGR4lFjLpRbdab1yNocq1JubQYkuw3hTvf3fIeZvKrTe4tVEZwy7P2i1jvrXUaZG5m91l9ZQ3tnNcpxVDxsLw7K/oFtvVsyOp5GUO1baxbncp53Q+D0Da6TeMbHLDoMph7WNpDOLOwqEDO4k1PHQSRUL24J3FzVTrrlC0Ss6KiIhEhBILmfQSujYSD7nB2jCojbM2ELcfHjqx8NRYJWxbYgbeEB6sqOzjaDXiiDc62Ll1PVvefY8CWxV+bMTOWDHi+Y+Uu+p6Atj4gG0zf//3P9jz0u9JMVpodGTimnf+iOfvbmbXWbV3yLF1B63XucKRP+j+F4DYLCvxSO4IvpStiIiIhI8SC5nUfP4A6X5rU3L3xuLBeFOtcrRRNUNvEDa6ejV0JoywcR2AzU6127qTULT+H7z2/BMAVMTPgwFKsA5b+mwaZn0cgJMP/IylVdZj+ZZcM+Sb+2D4kqcB4Gg4MORYb4X1OjclDP130915PNdfSudRZXlFRERk9CmxkEmtorGNXKz9EsFssI7JWwhAWuu+Iasaubp6WNhSCkcWZJfUeasA+LLjCb5t+xUAZmF471Z0SznvdryGg5NtO1ls248XB6krbgzL3M4Maw9HYuvQdxac9dZdjUDanCHHpuRZVaOSjDZKykpHEKGIiIgMhxILmdQqy0twGl6rh4V78M3bAGldG4inm8VUNnkGHev2WEusYtOnjTxQIGH5dTDvQkxHHHbDSmqmnHhhWObuw51H68Jre76tzj8HRlANqtfUU6wkIcNXSmCIZnZpbdZdjfi8oZvyGdFxVBtpADSoMpSIiMgxp8RCJrXGrh4W9fZUsDuGHO/s6mWRaTSwv2jgTcLtnX6yTGuJVfKU4few6CU+HS75PcbXDsJVT8EVT0JBeDpu98f9wa/jjYoHIOusm8M2b1rBfAByjRrK6+oHHNfY6qHQtDbWZ84IrndGfXQmAG3VxSOMUkREREKlxEImNU+1lRw0OYMsB+uMp9phja09uGXAYcWVtWQZ1pvm+MwR9LDoT5QTpq2CGeGtBtVHXCqO65+By/6KLX9Z2KaNSkinhTgAqop2DjiueP8OYoxOPEQTlzlw1+0jtcdkAeCvOzzyQEVERCQkSixkUgt09bDojA++z0RzolV9yFe2bcAxhw9Ym47bjRiMuLQRRBhh2Ytg1urwzmkYVEVby84aSwfuZVFXtBWACkde0OV6/QnWvEaz9liIiIgca0osZFKLbrGW2uDOD/6iTGspT1zDwG+Km4utN8U1sdPBMIYd30TVGm+VnPUPUnLWV2HdzWhODO5uBYDNbZX2dbWVjyA6ERERGQ4lFjKpJXSUAeBMG6KHxRGSChcDkNVxAK8/0O+YqCrrboYndf7IApygzO6Ss4M0s3PV77HGpg9dEarnmtRCABI7K4cfnIiIiAyLEguZtPwBk7SuHhYJQfSw6JYyzdpIPMs4zIHKpj7nTdMktcW6mxHT1cVaenNmdZWGbeu/5GwgYJLebm2sT8xfEPS8SVmFAKT6q4csBywiIiLhpcRCJq3KxvaeHhbJOcEnFkbKNDw4iTE6OXxge5/z5Y0dzDKLAEibcUJYYp1okvOsuxDZ/lJ8/dz1OVBWyQzTSjpy550S9LwpOdadp3SjkbrG5jBEKiIiIsFSYiGTVkV5CTFGJwEM7EH0sOhhs1MdY72B7d5LcaT9B/aTbjTix4YzJ/hP2yeTtHyrg3mG0UBZVXWf84fefR27YVJtzySqa99EMJwJ6XQQDUBt+cDLrERERCT8lFjIpNVYvg+AeluqVcI1BB0p1htjW1XfOxZ1+98GoCZ6CkTHjjDKickWm0yDkQRAZdGOPuc7izYAUOMOcSmZYVBrtxr5NVYUjShGERERCY0SC5m0OqqLAGhyZYd8bXSudSfC3bynz7lAxbsANLvnDj+4SaDGad0lau6n5Ky7dgsA9oLQ+2c0RVu9LDpq1CRPRETkWFJiIZOW2WCt4e+IDb6HRbfUaYsBKPAV09jm7XUusasMbVTOwpEFOMF53da+lvbDvZeT1bV0MMe3C4Cs+atCnrcj1kosAo0lIwtQREREQqLEQiYtR4tVatZMCmF/RZe4PGuJTqGtkvW7inqON3d4KfBa1YxSZywdeZATWMKclQAUNmygw+vvOb57+9u4jVY6iCaxq7RvKMxEa0+GvbksLHGKiIhIcJRYyKQV21EBQHRKCM3xusWl0RSdAcDet57rObzncCXTDKs5W0LBkpEHOYHlLr0AgPnGQbbs2NVzvHH3OgBKY+eB3RHyvFHJ1t9nbLua5ImIiBxLSixkUjJNk2Sv1cMiLqNgWHP4Z50PQEHZMz3LoSr2bsZmmDTakiEhMzzBTlBGQiaHY6x9KJVv/6fneHTFJgA82cMr1RubbiUWSd6qEUYoIiIioVBiIZNSU4ePTGoBSM4OvofFkZJPuhyAs4xNPL/FWv7UfngLAHUJs0ce5CTgKfwAAO7SVwDw+gPkt1pdy92zTx3WnO5sq6t3RqAaf0BN8kRERI4VJRYyKVXU1JFqWA3UXKl5w5tkygk0unKJMzyUb/wnbxfX01myBQCbNm4HJWfZhQAs8W3hQEUdew8eZoZRCkDWvNOHNWdyltVjJMFop7qmb48MERERGR1KLGRSqutqntZGDLjcw5vEMGDBxwGYV/McP/jDP7jI9gYA+QtOC0eYE15swQk02twkGO38b+0zPPPUYwBURE3BFp82rDntrniaiAegtuxA2GIVERGRwSmxkHGlxePjt28c5HN/2szhurbhz1Nl9ThocKRbCcIwJS27DICVtq3c2/l9Yg0PvsLTMeZ8aNhzTio2G5WZKwCYueMn3NT0QwCiZp01omnroqyN9S2VRSOaxx8w+e1/1vL0/94d0TwiIiKTgRILGRdM0+SHL+xh+b0v8fB/XsO/7SkeemXX0BcOwFdnJRatw2iO10v6bOoSZuMw/EyzVeCNyybq478Dm31k804iSQvOA+BE2x6chpfWqR8k7aLvjmjOFqe1cd5Td2hE8zzzwnNcvvFjzH/249Q1t49oLhERkYlOiYWMC++WNPLSyy/wHf+PeM11Cw9F/5gp23+FaQ5zc26TtY7fFx96c7yjJS77BAABIwrHpb+HuOEt4ZmsMo8/D68RDUDH0k8Sd+VfIDpuRHN2dv+9jqBJXlVTG/nrv4XT8FJoVLDp5b+PKCYREZGJLirSAYgEY++enTwV/S2ijEDPsdN8G9he1sRxuUkhz+dstZqnGe7Qm+MdLerE66F6J7bZ50HeshHPN+nEuHFc+QR0tuCac3545kzMhUqIahl+k7yX/3Q/lxp7e753bv8LXHh5OKITERGZkHTHQsaFjgNvEGUEqHflwZX/JIDBAlsRb27dPqz54j1WDwtn6vB6WPTiSoSLfwXzLxr5XJPVtJUQrqSC95sexnc1QQzVW9v3sLr8IQAqCq3KVSd5NrC3ePh3QERERCY6JRYyLsRUW5tnW/JWwfQzqE86DoD2Hc+GPJc/YJLqt8qQJmQWhitEGUMSs6xeFsm+4TXJq3/mHpKNFspd08m68reUOgpxGV72vvKHcIYpIiIyoSixkDGvxeMjv8PaqJ003Vpq5Jxvbfid1biO6mZPSPPVNHeQ3dUcz93V80AmltQpMwDIMmtobusI6Vp/wGR+ywbrz2fcDvYomudYZYWnFP8Dnz8w2OUiIiKTlhILGfPeO1TLcUYRAInTTwIg/jgrsTjVto3XdhwOab6KynJiDSsZiQrDHgsZe+JSp+DFjsPwU1lWFNK1+w8eYIpRTcA0yF54JgDTzrwOPwYLzd1s2rxxFCIWEREZ/5RYyJhXsmczMUYn7UYspM60DmYvosWRRpzhoXTLiyHN11RRBECDzQ0OV3iDlbHBZqfaZvWyaCjdF9KlFTusJodljjzsMVZhgOjkHPYlWElt+ztPhDFQERGRiUOJhYx5nuK3AahLmgu2rh9Zw8Az1WqillL2Cp2+4JentFUXAdDkyAhrnDK2NDqtkrPtVaF13/Ydsu5I1CUv7HW8NWc5ADENe8IQnYiIyMSjxELGvLhaa+O2mbOk1/HkxVZ369PNt9lT0RT0fP4Gq7JPe+wIm+PJmNYRlwtAoL44pOuS66yfN3t+79LBMdmzrfMdI2u6JyIiMlEpsZAxrbbFw3Sv9QlxyoyTep2zTT8DH3bybdUUHQi+C7e92Uos/Am54QtUxhzTbZWcjWoOvkRsS7uHGT7r5y173mm9zqXlzwcg11+G1+cPU5QiIiIThxILGdPeO1TFHMP6hDh26om9TzrjqYmxyoq2FG0Oek5Xu9XbICo5LzxBypgUnVoIQHx78E3y9u54mwSjnXacpBQu6nUuLW8WftMg3uigrCS0uyAiIiKTgRILGdMqdm8i2vDTYk8Ed99mdh1p1qfI9sptQc+Z1NUcz5WaH54gZUxKzJoOQKov+CZ59XusMrMlMbPBHtXrnOFwUWXPBKCmeEeYohQREZk4lFjImOYrsTZuN7gXgGH0OR+TfzwAqS27CQTMIefr8PpJN63meEnZ08IYqYw1qXnv97JoamsP6hp7mfXz1pZ+fL/n61xWMtpWHvzSOxERkclCiYWMaWmN2wEwc/p/o5c6fSkAsznI4fq2Iecrrm4ik3oAEtV1e0KLS7F6WUQZASpLDg453jRNsputn7e4aSf1O8aTZDVUNGv3hy9QERGRCUKJhYxZpmkyxVsEgDOv/8QiKscqCZpr1LL34NDr3suL9xJlBOjEgRGfGbZYZQyy2ai2WX/HjWVDJwLlNbVMN62fodwFp/c7xki17oLENA+dqIiIiEw2SixkzKpp6SSHKgCSc2f2P8iVRK3D6ldQf+DtIedsLt1pze2cAjZ7eAKVMavRaZUUbq8eupdF8XvrsRsmNUYqMan9b+yPz50DQFpHaN3eRUREJgMlFjJmlVfXkmK0AOBI6btxu1tLyjwAAuXvDTmnv2YvAG3xhSMPUMa8jvjuXhZD955o72rEWJkwb8AxGYVdJWfNclrbPWGIUEREZOJQYiFjVn3X8pVWIw5i3AOOi8qxyoImNe4cck5no/XJtZk6wB0QmVDMrkpiUU1D32FwVluVxbzpxw04JilzKh4cRBt+Sot3hydIERGRCUKJhYxZbdXWOvaG6KxBx6XMOAGAqb4D1LYM/ilySntXT4yuLsoysTm7e1l0DN3LIrPNaowXX7h04EE2G5V2a+ldwyFVhhIRETmSEgsZs7x11kbatticQcfFdG3snm6Usetw1YDj6ls7mWJabzBTC+aHKUoZyxKyrV4WaUP0sqiqq6fQtDp0585dNujYhlir5GxHpe5YiIiIHEmJhYxZUY3W8pVA4pTBByZk0Wx3W2VF970z4LCi8mpyjVoAXFm6YzEZpOVaVZwyzVoaWwfuZXFo19tEGQEajERihmic6HVb/U9sdSo5KyIiciQlFjJmxbaXAxCVPESHbMOgPtGq1uMp2TLgsJpD1h6MZlsCxKaEJUYZ22JTcukkiigjQFXJwJWhmg9uBqAiZla/jRiP5MiYBUB8S1HY4hQREZkIlFjImOXutJavxGZOHXKsLdvqZxFTu23AMW3l1tKVetfAFaZkgrHZqLZlANBQtm/AYfaqdwHoSBt6iVxiV8nZDG9JGAIUERGZOJRYyJjU2O4li2oAkrvWyQ8mdaa1Ln5a5x6qm/vfwG3UWqVmu7sny+TQ7LL26DSX7xlwTGqzlXS6BmjEeKTMqVbVqCyzhvrGpjBEKCIiMjEosZAxqbSmgQwaAHClDZ0IxEw9GYC5xiHePVje75jY5iIAbOmzwhKjjA+dqXMBsFW82+/5prYOpvmLAMiec9KQ88W4M2khBpthUl2yN2xxioiIjHdKLGRMqi07iM0w8eCEuLShL0iaQmNUGg7DT8WuDX1OBwImaZ3WZvDupSwyOcQUWuWI05v773NStGsLMUYnbbhICuZnwzCos6cD0FxVHLY4RURExjslFjImtVZaG23rHRlDbqYFwDBoSlts/fnwxj6nS+vbmIpVajYlf+DOyjLx5Mw/FYAZgYNUNzT3OV+3fxMAZc7pYAvun8TmaGvfRkft0I33REREJgslFjImdfewaI0ZvIfFkVxdy6Eymt7F5w/0OldSepgko40ABva0ofdsyMQRlzmDJuJxGj4O7uibdFJuLZFqSQ4+4fTEZgMQaNAGbhERkW5KLGRMMhqtN2y+hCF6WBwhdfZpACxiL7srem+qbTi8A4C6qAxwxIQpShkXDIPyOGuJU9OBt/qcTmqyOmg7piwKespAgpVY2Fv6388jIiIyGSmxkDEppq0UANtQPSyOYMtdjA87GUYDe/b0Xk/fUWFVBGqKKwxbjDJ+eNKtcsSOii29jtc0tTLda23Azpo99MbtbnZ3HgAx7YN39BYREZlMlFjImJTosd6wxaSHUBrWEUNNvNVRu2Xf+xu4AwGTljLrU2lb2ozwBSnjRtxUqxxxVssuTNPsOf7eumdJNNpoNBJJnb406Pli06zEIrGzKryBioiIjGNKLGTMaev0kRmw3rC5c6aFdK0vx3pzGFu1uefYpuJ6FnitdfS5s4J/8ygTR+5xpwAwzTxERV19z3H/jv8AUJqxEmz2oOdLzCwEIC1Q0ytRERERmcyUWMiYU1bXQrZRB0B8RmjN7NyzrH0W0z07qG/tBOD1N//HYtt+/NhxzL8gvMHKuOBKyafecOMw/BRts/ZZtHZ4mdP0OgBJiy8Kab7UHOvnMslopa6+LqyxioiIjFdKLGTMqSorxmH48WGHrk2ywYqfblWGmmcU8ZcNe+j0BYjd/Q8AmrJPgfiMsMcr44BhUBFvNcprPWhVhnpn4+tMMWroIJqcpeeGNF10nJsWrCIAteVFYQ1VRERkvFJiIWNOa+VBAOqj0kNangKAu4AOZyrRhp9tr/yNn7+yl9X+1wBIOunycIcq44g306r65KzaCkDL1n8BUOw+GSM6LuT51CRPRESkNyUWMuZ097BodoZ2twIAw8C59AoA1kT9ji2vPME0WwVemxPb3A+FM0wZZxKnW1Wf8lvf5c+vb6eg5hUAHPOG93PR3STPU3soPAGKiIiMc0osZMwxm6wO2Z1xWcO63jjjG/hSZ5NuNPILx48BaC1cDc6EcIUo41DegtPxGE4KjEpWvfgh5lKEHxsFyy8e1nzdTfL8DaXhDFNERGTcUmIhY46j1Wo6ZiYE33W79wQuoj72awJGFDGGtYE76aTLwhWejFP2+DSirvgbTTFTeooDHIpdgD0hfVjzqUmeiIhIb0osZMyJ6bBKzTqSc4c/SfYibGd8HYBATCrGjLPCEZqMc/bpK0n84kaaln6eFlc2med/ffhzqUmeiIhIL1GRDkDkaG5fNQCxacF33e7XqV+E6HhsWQvB7ghDZDIhRMeSeMF34ILvjGgaNckTERHpTYmFjCltnT7SzDowIClzhImFPQpO/kx4AhM5ytFN8gzDiGxAIiIiEaalUDKmVNS3kIHVGTkudYSJhcgoUpM8ERGR3pRYyJhSV1mC3TDxY1MzOxnT1CRPRESkNyUWMqY0V1s9ARrsKaE3xxM5xtQkT0RE5H1KLGRM6agtAd5vPiYylqlJnoiIyPuUWMiYEmiymo15YjIjHInI0DpirSaOapInIiKixELGGHuz1WwsED/M5ngix1B3E8eolrIIRyIiIhJ5SixkTHF1VAJgd4+gOZ7IMdLdJM/VXhnhSERERCJPiYWMKQmdVnM8V8qUCEciMrTuJnlJnUosRERElFjImOH1B0jx1wCQMNLmeCLHQHeTvNRALaZpRjYYERGRCFNiIWNGdVMHWYbVHC8pvSDC0YgMTU3yRERE3qfEQsaMqupKYoxOAGxJ2rwtY5/VJC8WUJM8ERERJRYyZnQ3GWsyEsHhinA0IsGps6cBapInIiKixELGjPaawwA0OdIjHIlI8JqirZ4rapInIiKTnRILGTO8XU3G2tUcT8YRT6z186omeSIiMtkpsZAxw9ZsNRnzxWVFOBKR4KlJnoiIiEWJhYwZ0W1WLwBDG7dlHFGTPBEREUtUpAOQ8e+/2yp4u7iOFo8Pn9/kUyunMyMjPuR54jxVADiT1RxPxo9wNMnr6PTxrz//gozpi1h12unhCk1EROSYUmIhI1LV1MFnH9tEnNlOPO3YjQCtHi8/v+KEkOYJBEzc/howID5dzfFk/Di6SZ5hGCHP8do/HuKSg9+i/EAqjYu3kRQfG+YoRURERp+WQsmIvH2win87vsF7rhvY4LqJN5xfYPq+3+H1B0Kap6rZQxa1ACRnqTmejB8jbZLX2NzG7J0/AyDbqGXjM78La3wiIiLHihILGZHynf9jvs2q328adgDODbzO5uL6kOYprazEbbQCEJWsOxYyfoy0Sd6Gv/+UAip6vs/d+Rt8Pn+4whMRETlmlFjIiJiH3wKgPHMlxq17CWAwz1bMxve2hzRPQ9k+AJqNBHAlhj1OkdHU0ySvMrQmeVV1DSw+8EsA9s7+FB1EM9fcz5uvPh32GEVEREabEgsZtg6vn5zmdwGImXYqxKXSkLwQAN+u50Kaq73qAAANTlWEkvGnp0leXWhN8jY/+X9kGXVU29KZ8bG72JN5PgD2N38e9hhFRERGmxILGbZtpY0sNvYCkDTrFABi5p0LwJyWNylraA96Ln9dEQAd8aoIJePPcJrkmabJvNK/AVB3wi0YjhimnHsrAMs8/2P7tnfCH6iIiMgoUmIhw7Zr906yjTr82DBylwAQM/8cAE61beO1ncE3DItuPgyA6db+Chl/Agm5QGhN8g4dPkQ+FQRMg8LTLwcgpfA4dsSeiM0wqXv7H6MSq4iIyGhRYiHD1n5gPQB1CbMhOs46mLWINkcKCUY7pe++HPRc8e3WGzJn2rSwxyky2qLc1p22UJrklb73KgAlUfk445N7jremH2/NWbc3jBGKiIiMPiUWMiymaRJXZS3VCOSe+P4Jmw1P4ZkAJJe9iieI6jY+f4B0n1UVJzF7RviDFRllw2mS5yv+HwC1XfuSukVnzQEgsTW0jeAiIiKRpsRChuVwXTvz/DsBSJ59Wq9zSQutDainmZt5r6RxyLnKG9qZYlRb12ZPD3OkIqPv6CZ5wUiu2wqAPf+k3sfz5wGQ7T0U9FwiIiJjgRILGZZ3DpYx37A+UY0uPLnXOduMMwhgY5atlH37dg05V3l5KfFGh3VtsprjyfgTapO81vYOZnj3AJB93Om9zmVNPQ6AFKOZ6qryMEcqIiIyepRYyLBU7/ofDsNPc1QqHL3hOiaZ6nhrOUf7gf8NOVdjudXDot6eAg5X2GMVGW2hNsnb997/iDE6aSKO9MIFveeKTaDSsPpiVB54L+yxioiIjBYlFjIssZWbAWhKOx4Mo895X/ZiAGKqtw45V3v1QWsuZ274AhQ5xrqb5DWWHxxybMMeq/BBSew8sPX9Z7jGaSXrzaVD3/ETEREZK5RYyLBkt1n7K/y5S/s9nzTdWjde6NlNY7t38MnqrSVVngT1sJDxqzHG2sDdXrF7yLHR5ZsA6Mjq//enPdGqjhaoHnouERGRsUKJhYTMHzBJ81prv+Ny5vU7Jn6qVSnqOOMg7x0afM25s8XqYWG4C8MXpMgx1plsVTSz1QyeDJimyZTWbQAkzjyl3zFG2kwAYpqGvvshIiIyViixkJBVNXeQY9QAkJQ1tf9BabPxGC7ijQ4O7R18OVRih9XDwpVRGM4wRY4pR5aVZCe2HBh03KHDh8ijkoBpkL/g9H7HxOVac6V1qOSsiIiMH0osJGRlVbWkGs0ARKUMUMXJHkVdorWB21O8ccC5Orx+MvxW7f+k7JnhDVTkGErOt6o5ZXsPEQgMXCb2yMZ40Uc0xjtSZldlqJxABe3tHWGOVEREZHQosZCQNZTtB6DViIMY98ADc5YAkFA7cGWbkrrWnh4WCVnqui3jV9Z0q7pTutFIeWXZgOO8Rd2N8RYNOMadVUA7ThyGn9KDO8MbqIiIyChRYiEha6u2lno0OLMHHZc80+pvMcO3h6rm/j91rSorxmn48GPDSMoLb6Aix5AjNomq7jKx+98dcFxKvbU0MKrgpAHHGDY7ZVFWMYP6Q9vDGKWIiMjoUWIhIfPXHwKgIzZn0HGughMAmGsUs624ut8xTRXW3Y+6qAywR4UxSpFjr8ZVCEBrSf/JQEtb+4CN8Y7WFGvN5alQyVkRERkflFhIyKKaSgAIJA5xhyFlGm22BJyGj7K9m/sd0l5p3f1oiRk8SREZDzrcVmUoBigTu/+IxnhpBccNOpc3xZorqn5fWGMUEREZLUosJGSx7db68ajUATZudzMMGpLnA+A7tKnfIW1V1h0LW/IQc4mMA7ZMq2BBXHP/laEa9lqN8Q7Hzu+3Md6RojNnA5DYWhS+AEVEREaREgsJSSBgkuKtACAhc+jN1o48azlUQt17eHz+XudaPT4yWqyNqe6CBWGOVOTYS8qzEumsziJMs29lqOjytwHwDNAY70gp+VbJ2Rzv4X7nEhERGWuUWEhIalo95NDVwyJn+pDj02YvB2CxuYu3i+p7nXunuI4TDGvJSNLslWGOVOTYy56xGIAcaqip690YsndjvOVDzpU51Uos3EYLDfW14Q1URERkFCixkJCUVteTYTQA4EgpHHK8MXUFfuxMt5Wz5b3ejfL273ybZKMFj+GC7IFLb4qMF66kDOpJAqDsqMpQwTTGO5IzNolmYgGoLS8Ke6wiIiLhpsRCQlJfZq0d7zBcENN/c69eXEnUpy4GwLfnxV6nvAes9eb1KQvB7ghrnCKRUuW09gs1H97W63gwjfGOVmezyte2VB8KY4QiIiKjQ4mFhKS16iAA9dHZYBhBXRM7bzUAc1repLLJ6mfR6QuQUW9VinIUnjIKkYpERmuitUQwUNW7MlQwjfGO1hxtJRYddSVhik5ERGT0KLGQkPjqigFoD6E8bOxcK7E4xbad13dZFaW2lTWyxLDq86fMWxXeIEUiyMiwqjnFNO7vdTyYxnhH64jJAsDfUBqm6EREREaPEgsJib2rh4U/cUrwF2UtpNWRQrzRQcm7awHYuXM7U4waq+P2lBNHIVKRyEjMs/pTTGnfTWOrdYfucHll0I3xjuSPt7rb21rKwxyliIhI+CmxkJDEtlufnEalhNB3wmajI38VAIkla/EHTNr2vQFAbcJccMaHO0yRiJm6aCXNxJFt1LLuX78FYNs//48Yo5OyqLwhG+MdyZ5k3Rl0tVeOSqwiIiLhpMRCgmaaJu5O6w1OXBA9LI7kXnAOACcHtvDRX6wnoXKjdSJ/6LKbIuOJLSaR0jnXAjBz98/ZXVzGSRV/AsBzypeHbIx3JGdKLgDxndXhD1RERCTMlFhI0OpaO8mhCgB3TmiJhX3mBwhgMM9WTH7p0yzDqpij/RUyEc284FZaiGUmh2l85OOkGC1UROUwdeWVIc0Tn54PQLK/ZjTCFBERCSslFhK0stpGMrGa3EWnTg3t4rg0jJzjAfhp9INMs1ndu6MKdcdCJh57XDIlM68AYJlpJdFtJ30R7FEhzZOaZf2epZhNdHS0hzdIERGRMFNiIUGrKy/Gbph4iIa49JCvN879Acy7CHJPgIQcWHI1xKWFP1CRMWDGh79GGy4AquyZTDvz2pDnSEjNpNO0YzNMqsvUy0JERMa20D4+k0mto6arh4Ujg6wge1j0knci5D0a5qhExqaohDRKFn+ewi3/h++MO4bVBNKw2amzpZBlVtNYVUzetNmjEKmIiEh4KLGQoPm6aum3OTMjHInI+FB44bfgnJvJcSUNe47GqHSyvNW01x4OY2QiIiLhp6VQEjSz2doX0RmXFeFIRMYJw4ARJBUAba4MALz1apInIiJjmxILCVpUa1ct/QQlFiLHirc7kW9WkzwRERnblFhI0GI8VqlZR1fTLhE5BhKs3zdHa0WEAxERERmcEgsJWqLXqqUfm5ob4UhEJo/oZOv3Ldaj7tsiIjK2HZPE4sEHH6SwsBCXy8VJJ53EW2+9NeDYRx55BMMwen25XK5jEaYMosPrJy1QB0BCRkGEoxGZPGLS8gBwe9UkT0RExrZRTywef/xxvvSlL3HnnXeyefNmFi1axOrVq6mqqhrwmsTERMrLy3u+iouLRztMGUJVYwcZhtUcL053LESOGXemlcinmXUE/IEIRyMiIjKwUU8sfvjDH3LjjTdy7bXXMm/ePB566CFiY2P57W9/O+A1hmGQlZXV85WZqfKmkVZTXYHT8AFgaPO2yDGTkpUPgNPwUlurfRYiIjJ2jWpi0dnZydtvv81ZZ531/gPabJx11lls2LBhwOtaWlooKCggLy+PCy+8kO3btw841uPx0NTU1OtLwq+p2qqh32RLgihnhKMRmTwczljqSQSgoVzdt0VEZOwa1cSipqYGv9/f545DZmYmFRX9f/I2e/Zsfvvb3/LUU0/xxz/+kUAgwCmnnEJJSUm/4++9916SkpJ6vvLy8sL+PAQ66roSC0dahCMRmXzq7akANNcosRARkbFrzFWFWr58OVdddRWLFy9m5cqV/P3vfyc9PZ1f/vKX/Y6/7bbbaGxs7Pk6fFjdaUeDr9Gqod/hzIhwJCKTT0u09XvnUfdtEREZw6JGc/K0tDTsdjuVlb3LJFZWVpKVFdw6fYfDwfHHH8++ffv6Pe90OnE6tTRntBldzbl8cdrvInKseWIzoR0CTWWRDkVERGRAo3rHIjo6mqVLl/LSSy/1HAsEArz00kssX748qDn8fj/vvfce2dnZoxWmBMHRZlXxMhL19yByrAXird87e4s2b4uIyNg1qncsAL70pS9x9dVXc8IJJ7Bs2TJ+/OMf09rayrXXXgvAVVddRW5uLvfeey8Ad999NyeffDIzZsygoaGB++67j+LiYm644YbRDlUGEdfVdTvara7bIsdalDsXisHVoSZ5IiIydo16YvH//t//o7q6mjvuuIOKigoWL17Mf//7354N3YcOHcJme//GSX19PTfeeCMVFRUkJyezdOlS1q9fz7x580Y7VBmAaZok+mrAgNg0bY4XOdZcqVMASOisjnAkIiIiAzNM0zQjHUQ4NTU1kZSURGNjI4mJiZEOZ0Jo7vDSeu9Msox62q99iZiCEyIdksikcmjnRvIfP4sGMx73XaWRDkdERCaRUN5bj7mqUDL2VDa0kU4DADEpUyIbjMgklJJdCIDbaKGlpTmywYiIiAxAiYUMqb6qBLth4scGcemRDkdk0olPSqPdjAagprw4wtGIiIj0T4mFDKm5xqqd32hPAZs9wtGITEKGQW13k7wqNckTEZGxSYmFDMlTZ9XOb1HXbZGIaY6y7ha2qUmeiIiMUUosZEj+Riux6IhR122RSGl3Wb9/vgZt3hYRkbFJiYUMydZqdd0OqOu2SMR4u5rk2ZrVfVtERMYmJRYypOiurtu2pNwIRyIyedm6ut472tQkT0RExiYlFjKkuK6mXNHJ6rotEinRKVZzyjhPVYQjERER6Z8SCxmUP2Di9tUCkJieH+FoRCavuK6u925fTYQjERER6Z8SCxlUdbOHbMNKLJIylViIRIq76/cvzazH5/NFOBoREZG+lFjIoMqra3EbrQDY3XkRjkZk8krJyMNvGjgMP7VV2sAtIiJjjxILGVRD5UEA2oxYcCVGOBqRycvmiKbOcANQX1EU0VhERET6o8RCBtVeVQxAg0OlZkUirTHKalLZWq0meSIiMvYosZBBeeutNzDtMVkRjkREWp1WkzxPfUmEIxEREelLiYUMyt5svYHxJ6jUrEikdcZadw7NJu2xEBGRsUeJhQzK1VYBgM2tilAikRboSvCjWisiHImIiEhfSixkUAmdVpdfV6oqQolEmsOdC0BMu7pvi4jI2BMV6QBkdJimyef+tJldFc1ctiyf/3diHgkuR0hzeHx+0vzVYIOkrKmjFKmIBCsmdQoAid7qYc/R7vHhjLJhs+tzJRERCS/9n2WCOlTXxjvvbcdZs4NvP72DU+59mVd2V4U0R0VDOzldzfHiMwpHIUoRCUVihrUkMTVQi2maIV+/65038H93Cut+/slwhyYiIqLEYqLasLeCfzjv4Fnnbfw3dg2rvK/xw//uCGmOyqpyYoxOAIyk3NEIU0RCkJpdCECC0U5TY0PI17e88H3ijXZW1P6NreufC29wIiIy6SmxmKBKd2wgy6gHYE5gLz+LfoBzq39DTYsn6DmauppwNdrcEOUchShFJBSueDfNxABQW34wpGsP7d/B8a2v93wf++LX6Oz0hjU+ERGZ3JRYTECmaRJT8gYAjTkrYPnnAfio/TXe2BP82uyOWqs5XlO0eliIjBW1dquXRWPZ/pCuO/zfH2M3TPY45tJIPDMDB3nrb/eNRogiIjJJKbGYgPZWtbDI+y4AcQs/DB+4g06bi0yjgb3vvRn0PP6uJlwdsUosRMaKRpe1gbu9al/Q1zTU17Ko6l8A+FZ8hf3H3QLAgj0PUF1ZGvYYRURkclJiMQG9ubuUE2x7AIiavgqinLRmnwxAdPErBALBbfqMarHecAQStb9CZKzwJBZYf6gLfinUtv88QLzRziFbHnNP+wiLL/oixfZ8koxWDrzxxChFKiIik40SiwmoaufrOA0vrdFpkDYTgIT55wCw1LuZnRVNQc0T22414XIkq4eFyFhhS7FKP7taDgU13jRNCg/8CYCa467DsNmwRUVRkXISAP6qXaMTqIiITDpKLCYYf8Akvnw9AJ68U8EwAIiadRYAJ9p2s37n4aDmSuy0ytPGpheMQqQiMhyxWTMASPYEt4SprHgvU8wKfKaNeauv7zluZM4BIK5xb/iDFBGRSUmJxQSzo6yJJYFtACTN/cD7J1Jn0OLKwWn4qNv+8pDzNHd4yaTGmidTzfFExoqUPCshyPJX4PcHhhxf+t5aAIoc03DFJfUcT8o7DoCMjqJwhygiIpOUEosJ5q3dh1hsWNVi7NNXvn/CMAhMPxOArOp1tHp8g85TXt9KFnUAxKTlj06wIhKy9NwZ+EwbMUYnFaVFQ473F/0PgLqUJb2OZ8883vov1TQ31Yc9ThERmXyUWEww3oPrcBh+mlw5kFzY61zC/A8CcJqxlbeK6gadp7riEFFGAD82SFBVKJGxwu6IpsqWDkBdye4hx6fVvwNA9NTlvY4npmRSixuA0r1bwxukiIhMSkosJpiMurcBaMg8uc85Y9oq/NiZbitn3+7tg87TWlkEQL09DWz2sMcpIsNX57QqtbWUD74/orGhjml+q3pU3qIz+5yvcBYC0FT8XngDFBGRSUmJxQST3G41tbNnL+x70pVEnXsBAP6Dbww6T1NXYtHm0t0KkbGmPc6q1BaoPTDouINbX8VumFQY6aTmFPY535JobQT3V+4Ie4wiIjL5KLGYQDq8fjL8VonYxJyZ/Y6xFVh3MpLrtuAbZONnZ431KaeZNCXMUYrISJnJVkGF6KbiQce17rUqxJUlLOr3vJExF4CYxuCb7YmIiAxEicUEUtrQzhSjGoD4zGn9jnHPPhWAheZudlc29zvGNE2Smq0Ge66c+aMQqYiMhDNjOgCJ7SWDjouv3gRAYMqyfs8n5luVoTI7gm+2JyIiMhAlFhNIeWUlSUYbAEZy/70n7HlWU6zZRgnv7eu/wVZ5YwczAkUAJE9bGv5ARWRE3LmzAcjwlWOaZr9jvF4v0zt2ApA+f2W/Y3JmqDKUiIiEjxKLCaSxzNrI2WRzQ3Rc/4MSMmlw5WIzTOr3/q/fIbtLqplulAEQndvPXg0RiajMAiuxSDaaqa+t7nfMge0biTfaaSGGvNkn9DsmMfX9ylBlqgwlIiIjpMRiAumotpYzNLlyBh3nybLuQjgrNvV7vnL/VqKMAK22REgcfC4ROfZc8W7qsJrdVR7a1e+Y2p2vAVDkmoctKmrAuSqc1t3NhkPbwhyliIhMNkosJpJ6ayNnZ0LeoMMSZ50GwIyO7VQ1d/Q531lqfXLZkDgLDCPMQYpIOFQ7rKS/uWxPv+cdJRsAaMvq/25Ft5ZEq9BDQJWhRERkhJRYTCDOlsPWHwbYX9EtpqtR1mLbPjb30ygvtr7rE9Cs48Ian4iET0us9QGCt7pvyVmfz8f0FqunTcr8swedR5WhREQkXJRYTCCJHeUAuNKmDj4wYx4eWwyJRjuHd2/udarV4yPXs9+ar3DJqMQpIiPnT7I+QLA3FvU5t2/bW6QYzbThZOri0wedJyHPqvyWocpQIiIyQkosJohWj4/MQCUA7twZgw+2R9GYYm3K9hX33sC9q7yJuYa1pCqhYHHY4xSR8IhKt0rOJrQW9TlX894LAByIWYjd4Rx0nvR8645FRqAGn9cb3iBFRGRSUWIxQZTUtZHX1cMitqvG/WBc06zlUOkNWyltaO85XnxwD26jFR92SJ8zOsGKyIjlzLN+h2d07qa+vveSxrjSdQB05K0Ycp7kjCn4TBtRRoC6qtLwByoiIpOGEosJoqK8lFjDQwADguiWnTjT2sB9sm0HT256v59Fa/E7ANTFFELU4J90ikjkZE1bRJktG6fhY/e6p3qOd3R0MKvdKsCQsfCDQ85jj4qixkgBoL5Cy6FERGT4lFhMEE0VVg+LRntqcAlBwal4o+KYYtSwd+PzBAJWky179XYAPKlzRy1WEQkDw6As02p8Z+7+b8/hPVteI87ooJF48ub133H7aA2OdABaq/tvmikiIhIMJRYThKe6CICWmNzgLoiOxTjuYgBWtj3PW0V11LZ4SGmxSle68haPQpQiEk5Jiz8MwOymdXR2Wvsjmra/CMDBhCUYNntQ87Q5MwDorCsZhShFRGSyUGIxQRiNXT0sEgfvYXGkqCVXAnCe7U3+8sYOrntkI7NMa56UaaoIJTLWTV9yNs3EkmI0s2PTywAkVVj9K/z5g1eDOlJnXDYAZpP2WIiIyPApsZggXC3WJ432IXpY9JK3jI6kacQaHqJ3P0V62ctMs1VY82QvHI0wRSSMbI5o9idZm7ibt/6bndvfZVan1egud+nq4CdKtJrtOVorwh6jiIhMHkosJgDTNHF7rB4WMRnTgr/QMHCecBUAn7H/iwccP7WOL70W4tPDHaaIjALbnPMAmFH5LGl/vQCn4aPIMZ2sqQuCnsORbBV8iO2oHJUYRURkclBiMQE0tfvIMqsASM6dGdK1xqJLMbEx1VaJy/DCzNVw3v+NRpgiMgpmnHIRPtNGNjWkGw0cckwl49P/AsMIeo64tHwA3L7q0QpTREQmASUWE0BJfQtTunpYRA/VdftoidkYM8+2/py7FD7+O7BHhTlCERktsUlp7I1dDMB+5zwyb36J2NShS04fyZ1VCEBaoJaAPxDmCEVEZLLQO8gJoKHyME7Dhx8b9oSc0Cc4//9g23JYcjVEx4U/QBEZVTlX/JI97zzN9LNuxO6KD/n61Kx8AqZBtOGjtrac1Iwgq8uJiIgcQYnFBNBWbVVyqrenkTacuw3ufDjti2GOSkSOlaTcWSTlzhr29Y5oJzVGEmk0UF9epMRCRESGRUuhJgBPvbVxu7WrFr2ISKjqo6yCDc1qkiciIsOkxGICCDSXAdAZo8RCRIanJbqrSV7t4QhHIiIi45USiwnA3mKViAzEZ0U4EhEZrzpjrX8/AmqSJyIiw6TEYgJwdlilZu2JSixEZHgCida+iqiW8ghHIiIi45USiwkgvtMqNetM1oZLERkeh9v69yNGTfJERGSYlFiMc/6ASbK/DoD49LwIRyMi41VMV5O8pM6qCEciIiLjlRKLca62xUO6UQ9AohILERkmd1YBAKmBWsyAmuSJiEjolFiMc1X1TaQYLYD2WIjI8KVmFwIQa3hoaqiNbDAiIjIuKbEY5xqrrdKQnTggJjnC0YjIeOWKiaOeBADqyg9EOBoRERmPlFiMc601VmnIxqhUMIwIRyMi41mdPQ2A5io1yRMRkdApsRjnOuutxKI1Oj3CkYjIeNfdJK+jriTCkYiIyHikxGKcM5utmvOdsZkRjkRExruOriZ5/gYlFiIiEjolFuOcrdWqOW/GK7EQkZEJxFmJhb1VvSxERCR0SizGOWd7V9ftpOwIRyIi4133vyPd/66IiIiEQonFOJfgrQHApa7bIjJCzuQcAOI6ayIciYiIjEdKLMYxnz9Ast+qNx+fpuZ4IjIycalTAHD71cdCRERCp8RiHKtp6SRTXbdFJEySMq1/R1LMRnzezghHIyIi440Si3Gsqq6BJKMNAJu6bovICKWk5+IzbdgMk/rqskiHIyIi44wSi3Gsscrquu3BCa6kCEcjIuOd3W6nznAD0FCpJnkiIhIaJRbjWGtXEyt13RaRcGmIsrpvt9aol4WIiIRGicU45uvqut3mVNdtEQmP1mgrsfA0aCmUiIiERonFOGY2VQDgjcmIcCQiMlF0dv17YjaVRzgSEREZb5RYjGP2Nqs7biBBXbdFJDwCcda/JzZ13xYRkRApsRjHXD1dt3MiHImITBTqvi0iIsOlxGIci/dWAxCboq7bIhIe6r4tIiLDpcRinOrw+kkN1AGQmJ4f4WhEZKJQ920RERkuJRbjVGVjO1mGlVjEKbEQkTBR920RERkuJRbjVHVNNXGGBwAjUXssRCQ8enXfriqNdDgiIjKOKLEYp5qqigFoMeIhOjbC0YjIRNGr+3bV4cgGIyIi44oSi3GqvdbqitvsSItwJCIy0aj7toiIDIcSi3HK12AtUWiPyYpwJCIy0aj7toiIDIcSi3HKaLG64vrilFiISHh1d98OqPu2iIiEQInFOBXd1XXbpo3bIhJmga4PLOytFRGORERExhMlFuNUvMfqihut5ngiEmb2JCuxcLZXRzgSEREZT5RYjEOBgEmyz+qKqx4WIhJu6r4tIiLDocRiHKpp9ZDR1RwvMaMgwtGIyETT3X07Wd23RUQkBEosxqGqumbSjSYAHG4thRKR8Oruvp2s7tsiIhICJRbjUH3VIQC8REFsaoSjEZGJJiU9F69px2aY1FaqSZ6IiARHicU41Fpj/Y++ISodDCPC0YjIRGO326m2WR9a1Jftj3A0IiIyXiixGIc666xuuK3O9AhHIiITVb0jE4CWyoMRjkRERMYLJRYR0OH1U9c6/HXLZlfTKm+smuOJyOhojbH2b3nriiMciYiIjBdKLCLg8offZPm9L/H63uHViHe0WomFmZAdzrBERHr4E63KUPZG7bEQEZHgKLE4xvZXt3Co+CAF/mI+9Ye3eedQfchzxHRYzfEcyVPCHZ6ICABRyVaPHFdb2bCu9zTXgGmGMyQRERnjlFgcY89tK+dP0d/heefXOM//Mtc+spE9lc0hzZHote50xKQqsRCR0RGTXghAUmdFyNduf+XPOO+fzns/uhB/Z0eYIxMRkbFKicUxtnfrembaSgH4vuPXnNyxjm/9c1vQ17d4fKSbVtOqxEw1xxOR0ZGcOwOADH8VZiAQ2sVv/hKABU2vsufH5+NtD+3DExERGZ+UWBxDFY0dTK15GYCAIxY7AX7q+BnOQ6/R3OENbo6GdjINa/lUbIruWIjI6EjPnU7ANIgxOqmrDn45VE3pfua2bwGgzXQyt20TRT85l4Aa7YmITHhKLI6h53dUcI5tIwC28++H+R8h2vDzDfsfeetgXVBz1FaX4TR81jfavC0ioyTa6aLGSAagtjT4XhYHXvoNNsNkm2MBO856lBYzhpkd77Frw79GK1QRERkjlFgcQ1u3bGKWrZSAEQWzz4Pz7gdgru0QW3buDWqOxgqr63ajzQ1R0aMVqogIdQ6rpHVL5YGgxpuBANlF/wSgec7HOWHFuexMWG7NUfTOqMQoIiJjhxKLY6ShrZOM0hcB8OSdCjFuiEulMWkuAN59rwQ3T5VVU77VmTEqcYqIdGtxWXdFO2uLghp/YOtr5AVKaTejmfeBK61r0+YD4KjePioxiojI2KHE4hh5eVcVq21vARCz4MKe49EzVwFQ2LSJmhbPkPP4aqwuuL6E3PAHKSJyBG/XvzNGQ3C9LOrWPQLAe4mnk+ROASCu4HgA0lt3hz9AEREZU5RYHCPFB/ex2LYfEwPmnN9zPGb2BwA4zb6NDftqhpwnttla62ykzRqdQEVEutiSrcpzziB6Wfh9XmbVvABA9NLLe47nzD7R+q+/nI6WhvAHKSIiY4YSi2MkrcyqBlXtXgQJWe+fyF+O34hiilHDrp3vDjqH1x8g3WN9cpgwZe6oxSoiAhCTVghAYkf5kGOLtv+PJFpoMmM57tQLeo6nZ+dRTTI2w6Rk96bRClVERMYAJRbHSFKTtTnbk3NS7xPOeJrTFlt/PvjqoHMU17YxzbA+OUzKmx/uEEVEeknKng5Aur9yyLG1O14D4EDMcUQ5HD3HDcOg1DUTgIYDm0chShERGSuUWBwDgYCJ22M1xYvN6ruEqXs51Nz2dzhc1zbgPEVlFWQbVllaI23mKEQqIvK+jDyrSV6C0U5j/eBLNR2lbwLQlnVin3OtyV13WCveC2+AIiIypiixOAYqmzvIpwKApCmz+5x3zjwDgOW27WzYVz3gPPWHdwLQbE+GmORRiFRE5H0xcQnUkQhAdckgJbFNk7yWrQAkzFrR57QjdxEASY27wh+kiIiMGUosjoHi6iZyDevTvqjUaX0H5C6l0xZDqtHMoV0bB5yns8L6n3JT3NRRiVNE5Gi1UZkANJcP3CSv4tBu0mig07QzfdFpfc6nzzwBgDzvQQI+7+gEKiIiEafE4hioLd2Pw/DTiaP/btlR0bRkLgMg+vAbA87jqLf+x+5PmT4qcYqIHK25q5eFp7Z4wDFlW63iFPsdM4mNS+hzPm/6fFpNJy7DS/mBbaMTqIiIRJwSi2OgtcJaQtDgzAVb/y953OyVAMzueI/ShvY+503TJKmtCABn9pzRCVRE5CidcVYvC3OQXhb+4g0A1Kcu7fd8VFQUhxzW3drqvQPflRURkfFNicUxEKg9AEB7Qv6AY5zTTwdgmW0Xb+7vu8+itrWT/IC1ATw5/7hRiFJEpC8j2fp3y9V8aMAxGfXvAOCcduqAY+oTrQ3c3pKtYYxORETGEiUWx4CzqWsJQfIgeyNyFtNpiyHZaKF419t9Tu+vaGSqYdWSj85UczwROTYSuzpn57btxAwE+pxvrq+kIGDdzchfvGrgibIXABBXvz3sMYqIyNigxOIYSOwoAcCVOWPgQXYHzelLALAVr+9zurJkHy7DixcHuAtGJU4RkaNNXXQaXtNOBnWUH+pbGar4nVes/xpTSM/MHXCepHwrsUjxlIxOoCIiEnFKLEZZQ1snOQGr1Kw7d/A7DXGzrOVQ09u3UtXU0etcS6lVarbelQc2+yhEKiLSlys2gYMOq2BE2ba+TTzb970OQHnSokHnSc6y7timBWoJ+HxhjlJERMYCJRajrLimlQKjCgBnxuBN7VwzrMTiJNsu3jxQ2/tkjfVJYUdSP+VqRURGUV3KYgB8Rf/rcy6j0kosKOzbv+JI6TkF+EwbUUaA+irdtRARmYiUWIyyivJiYg0PAWyQlDf44Nyl+Ixo0o1G9u/a0utUbLO1AdyW0bfBnojIaIouXA5AWv2WXscri3ZS4C/Ga9qZedrFg87hcDioNlIAqK84MCpxiohIZCmxGGUtZV2lZh0ZEBU9+OAoJ02piwEIHHwD0zQBeLu4jkyPtTkyOX/eqMUqItKf3IVWOexC30Famxt6jh/a8DcAdjoXkJqWOeQ89VEZADRXDdwTQ0RExi8lFqPMW2M1tWuNG7jU7JFiu/ZZTG3byks7rSVUD7+6l1k2K7GIy5k7ClGKiAwsc8p0KkgjyghwcOvrPccTip4DoKngg0HN0+qykg9v7cCla0VEZPxSYjHKohqsT+Z87sKgxnfvszjFtp0fPPMueyubse/+D6lGMz5XCmTMH61QRUQGVJpgVXVq3rsOgKbaCmZ2WKVjC5Z/LKg5vHE51h+atMdCRGQiUmIxyhLarU/motOnB3dB3kkE4jLINBo4pf5fXPPbt7jB/h8Aok76JDhcoxWqiMiAvDknAhBbZfXZ2ffGE9gNk322qeRNC3LvV5JVjtbRWj4qMYqISGQpsRhFHV4/mT7rf6BDlZrt4XBhO+MbAHwh6u/MbV7HYtsBAnYnnHjDaIUqIjKo1DlW1afC9u0E/H7se54FoCLnrKDncKZYS0LjOyrDH6CIiEScEotRVN7YQb5h/Q80LmvwUrO9HH8lZtocko0WHnD8FABj0ScgPn00whQRGVLh/JNoN6NJopWie09kTsubAKQtvSjoOeIyrOaeyb6q0QhRREQiTInFKKqpqSbFaLG+SZ4a/IX2KIwP3gOAy/ACYJzy+XCHJyISNEe0k53xJwEwzbcfp+HlsJHNrIWnBD1HSo7172CK2Yivs2OI0SIiMt5ERTqAiay7pGKLEU+8Mz60i2eeDdNWwYG1MPs8SAvhjoeIyCg47uYn2bH1DZrrKmhvqiF34ZnY7MF/PpWanovHdOA0vFSXF5FZMGcUoxURkWNNicUoaq8rBaDZkUaIaQUYBlz4c/jfz+Hkz4Q9NhGRUEU7ncxb9oFhX2+32yi3pTLFrKCh4qASCxGRCUZLoUaRr6EMgA5XxvAmSMqF1d+BpClhjEpEJHIaHNa/h63V6mUhIjLRKLEYTS0VAHjjhu5IKyIyGbS5sgDw1h2OcCQiIhJuSixGUXSbVRHKSMyJcCQiImODNz4bAKOpNMKRiIhIuCmxGEWxHqukYrRbiYWICICta2mns01N8kREJholFqPENE0SfbUAxKVpj4SICIArzeplkeBRkzwRkYlGicUoaWr3kU49AAnpeRGORkRkbIjPKAQgxV8d2UBERCTslFiMksqmNjK6Egtncm6EoxERGRvScqYB4KYZT3tzhKMREZFwUmIxSmqryok2/NY38aoKJSIC4E5OpdV0AVBbWhTZYEREJKyUWIyS5hqrlGKjzQ12R2SDEREZIwybjWpbGgANlQcjHI2IiISTEotR4qmzmuO1RKdHOBIRkbGlKdq6i9teUxzhSEREJJyUWIwSf6NVo90z3K7bIiITVHuM9e+ir6EswpGIiEg4KbEYJUZX122/um6LiPTii7W6bxstKjkrIjKRKLEYJc52qzmekaTmeCIiR7IlWB+4ONqqIhyJiIiEkxKLURLXadVoV6lZEZHeot3WBy6xnTURjkRERMJJicUoCARM3F1dt+PVdVtEpJeYVOsDl0SfEgsRkYlEicUoqGn1kGGo67aISH8Su/5dTA3UYwYCEY5GRETCRYnFKKhqaCWNRgCitMdCRKSX1EwrsYg2fDQ36q6FiMhEocRiFDRUlWA3TPzYIC4t0uGIiIwpMbGxNBAPQEPl4QhHIyIi4aLEYhQ015QA0GhPAZs9wtGIiIw99bYUAJqrlViIiEwUxySxePDBByksLMTlcnHSSSfx1ltvDTr+b3/7G3PmzMHlcrFgwQKeeeaZYxFm2HTWW02fWtV1W0SkX80O626up15N8kREJopRTywef/xxvvSlL3HnnXeyefNmFi1axOrVq6mq6r9++fr16/nEJz7B9ddfzzvvvMNFF13ERRddxLZt20Y71LAJNFn/o+yMUddtEZH+dDitD168jeURjkRERMJl1BOLH/7wh9x4441ce+21zJs3j4ceeojY2Fh++9vf9jv+Jz/5Ceeccw5f+cpXmDt3Lvfccw9LlizhgQceGO1Qw8beanWTDcRnRTgSEZGxyRfX9cFLc0VkAxERGct8nkhHEJJRTSw6Ozt5++23Oeuss95/QJuNs846iw0bNvR7zYYNG3qNB1i9evWA4z0eD01NTb2+Iu3sPKt8Ynbe1AhHIiIyNhldH7xEt6v7tohIv3we+HYmfH8qtDdEOpqgjGpiUVNTg9/vJzMzs9fxzMxMKir6/5SqoqIipPH33nsvSUlJPV95eZHvGxHTYXXdjk+LfCwiImNRlDsbgBhPdYQjEREZo5orABOzswVcSZGOJijjvirUbbfd9v/b++/4yK/y7v9/TR+NyqiNurRaba9ed9Y2tgGDg8FASIDcENqDQAiQcAN3KIHQEwg3yTff8CWBkAL5hcQJCRATHANuGPe69treXW+TtOpdoz7t/P44krzyqsxoZjQa6f18PPaB/Pmcz5lr7WF3rjnnXBejo6Pzv86dWwcVRt7yz/Dhp2D3a3IdiYjIulRQbrtvF0cHcxyJiMj6NDPSCUBHLMjodCzH0STHnc3JKysrcblc9Pb2Lrje29tLTc3i5w9qampSGu/z+fD5fJkJOFM8BVDWnOsoRETWrZJQAwBliWEwBhyOHEckIrK+hPs6CAH9lNHgz+pH9ozJ6oqF1+vl0ksv5c4775y/lkgkuPPOOzl8+PCizxw+fHjBeIBf/OIXS44XEZH8U17TBEDAMcPk2HCOoxERWX8mB+0unLC7EkeefPmS9a1QH/3oR/nOd77D9773PY4dO8bv/d7vMTExwbvf/W4A3vGOd/CpT31qfvyHP/xhbr/9dv78z/+c48eP8/nPf57HHnuMD33oQ9kOVURE1khRUQlhEwBguLc9x9GIiKw/833RfPnTviDr6ypvectb6O/v57Of/Sw9PT0cOnSI22+/ff6Adnt7O07nC/nNVVddxb/8y7/wmc98hj/6oz9ix44d/PjHP2b//v3ZDlVERNbQsLOcEjNJuL+D+h2Hch2OiMj6Mmb7/EQDSiwW+NCHPrTkisM999xzwbU3velNvOlNb8pyVCIikktjngqIdDA1pO7bIiIv5p6YrYhaXJvbQFKQ91WhREQkP035KgGIjiqxEBF5sbly3J5gXY4jSZ4SCxERyYloYLZnkbpvi4hcoCQ6AIC/oj7HkSRPiYWIiOTGbPdt96S6b4uILDAzTsBMAhAM5U/DZSUWIiKSE55Sm1io+7aIyEJmdiV3wviorKjMcTTJU2IhIiI54S9T920RkcVMDnUA0GPKqQ4W5Dia5CmxEBGRnCieXd4vSwzlOBIRkfUl3Geb4w06yynwunIcTfKUWIiISE6UzXbfLmKKqbGR3AYjIrKOTA/aFYsxd/5sgwIlFiIikiMlJaWMmkIABrrO5DgaEZH1Y64M93RBKMeRpEaJhYiI5ITD4WDQZb+NC/e25jYYEZF1xDF7eDsWqMlxJKlRYiEiIjkT9tpeFlMDbTmORERk/fBM9gLgKFZiISIikpTpAvuXZnykM8eRiIisH4HZMtze8vxpjgdKLEREJIfixfYvTdeYEgsREQCMIRizZbgLyvOnOR4osRARkRxylzUA4J/qyXEkIiLrxPQoPmYACFY15DiY1CixEBGRnPFX2pKzwUhvjiMREVkfErMVoUZMIdUVpbkNJkVKLEREJGdKa5oBqIgPgDG5DUZEZB0I99vmeL2mjMoiX46jSY0SCxERyZnKuhYAAo4Zxkb6chyNiEjujQ/YxGLYVYHHlV8f1fMrWhER2VAKC4sYogSAoa6zOY5GRCRDnrsVeo6u6tHpIVvMYtybX123QYmFiIjk2KDLdpYN96aYWCTimM4n7V/e4S6Ix7IQnYhIik7dAf/+dvjua2FyKOXH4+FuAGb8VZmOLOuUWIiISE6NzTbJmx48l9JzJ/7razi+cz186xr4iz0MfnUf8emxLEQoIpK8xH1/ZX+YHoFf/XnKz7vGbGIRL8qv5nigxEJERHJsJlALgBnpSOk533P/AUDYFJAwDiqiPZx+7BcZj09EJGndT+Ns/SUJ4wDAPPxtGEptNbZwsh2ARLA509FlnRILERHJKVMy2yRvvCvpZ8K9Z2mOniJhHBz7zXu4r/AGAMZP3Z+VGEVEkmEe+AYAP0kc5t74ARyJKNzx+RQmMJTP2DMW3tC2LESYXUosREQkp+aa5AVSaJLXev8PAHjWvYcrD+yGxivsHL2PZz5AEZFkjHZgnvkhAP/suJmvJH6buHHAcz+Gc48mN8d4Lz4zQ9w4qGjYnr1Ys0SJhYiI5FQgtAWAYDT5crOeU7cDMFD/CgDKd78UgKapY5h4NMMRiogk4eFv4TQxHozv5dLDL+fyK67hx4mrAUgc/UFSU8QGTgPQZSppqirNVqRZo8RCRERyqrRmKwCViQFMIr7i+JnxIbZPHAGg+vI3ArB932WMmQICTNNz8omsxSoispTpZ38KwD+bG3n31c18+BU7eMB1OQBjJ36Z1Bwjnc8DcI5qqov92Qk0i5RYiIhIToXqtpAwDryOOKP9K5+zOH3/D/E44pyhgd37LgbA7/Vw0rsXgN5nk/sLXEQkY+JRPKNtANTuvYrqEj8VRT62XvJKAIpHT8DU8IrTTPScAmDIV4/T6chevFmixEJERHLK5/Mz4CgDYLB75eopsefst4LtVS9b8BdvOGSTDEfHI1mIUkRkGcOtuIgzYXy86iWXzF8+tGcXpxO1ODGYtgdXnCYxaLdCTRc1ZS3UbFJiISIiOTfktk3yxvtalx2XiM6wbdT+5Vx80esW3CtouQqA6tGnMx+giMgyprqPAXDW1LKzpmT++iVbSnnE2NXUZLZDecN21SNRtjULUWafEgsREcm5CZ9tkjcztHyTvPZn7qOQKQZMkP1XvGzBva0XXUvcOKhJ9DIxkFqzPRGRdIy0PwtAh6uB0oB3/nrA66a3zK5gxM78asV5glO2n4+/Ov8qQoESCxERWQdmCuvsDys0yRt6zn7jdzZwAJ/Hs+BeVSjEGaetMHXuqXsyHqOIyFIivScAGC28cKXBu81WrSsdPQYzY0tPMj1KUSJsx9bvyHyQa0CJhYiI5JyZXfYvCJ9edpy3y56fmKq5fNH7PcGL7P0zD2QwOhGR5XmG7aHrePmFKw17d++hPRHCSQLaH15yDjN0BoB+U0JDdVV2As0yJRYiIpJzJc324HXN1MmlByUSNE4cBSC469rFx9RfCkDBwDMZjU9EZEnGEJxoBcBfs+uC25c1l593zuKeJacJd9lSs+2mmoayQMbDXAtKLEREJOcadl9OwjgImSHGBhcvOdt79mmCjDNpfGw/eHjRMcF6+5d6aST5Lt4iImmZHKQwYbc4VTTtveB2kc9NZ9B+eRJZ5pzFWJf9YqXPXY/XnZ8f0fMzahER2VDKyso556wFoPPY4uViu4/eDcAp7y4KAwWLz1NntyFUJgbUgVtE1kS83640dJhKttaGFh3jabHnLILDz0BkYtEx0QG7FWqisDELUa4NJRYiIrIu9AXsYcXxtsU7Z5v2hwAYqbx0yTmq6rcQMS7cjgQjve2ZD1JE5EXmKkKdMfXUly3+pcfOXfvpMJW4TQzaF+9n4R5pBSBe2pyNMNeEEgsREVkXpiv2AeDqe3bR+zUjRwDwb7t6yTl8Hg99jkoABjtOZTZAEZFFTHTaHhaD/iZcS3TLvrylggcS9s+4ieN3LTqmaNKWyfaGWrIQ5dpQYiEiIutCQeMhACrGTlxwb2zgHLWJHuLGwdaLrl92niFPDQDjfSt38RYRSdugPRsxHVw6IQgWeGgP2mp2kZN3XzggOk0w1g9ASd2FB8DzhRILERFZF2p3XwFAfbyDyNT4gnvtR+xfxGdczYRCi+9hnjNRYHtixAbbshCliMhCgbA9G+GqWj4h8O6wTT2Do8dgcmjhzZE2nBjGTAE1tfVZiXMtKLEQEZF1oa5+C4MmiMth6Dzx+IJ706fvB6B3trLKcmLFDQA4wuq+LSJZFpuhLGIr2ZXUX1gR6nyH9uziRKIBJwZz9t4F96bO2jNkp00dWyqLshPrGlBiISIi64LD6eScbxsAw6fPSywSCep77YqFo/mqFedxlTcBUDDRmfkgRUTON3QWFwnGTAH1jRd23T7fZc1lPGT2AzB27M4F96LP3ArAQ67LKPK5sxPrGlBiISIi68Z4mf3GL9Hz9Py1jqfvpCbRy7gpYNe1v7niHAUh+5d7iXpZiEiWTXQdB+CMqWVr1fIrDQGvm57KK+0/nPnlCzdmxgh02BWM1qqXZyXOtaLEQkRE1g1X3UEASkaOz18bvP97ADxZfB2VZWUrzlFaaw9QhhL9kEhkIUoREWt4vqldbVIrDSW7XkbcOCiZbIPRDnvx1B24ExHOJqrZe9GV2Qw365RYiIjIulGx/TIAGqNnMPEY8ZkJtvffAYDnkrclNUd1Qwtx48BHlPCgtkOJSPZMDtizXDOBmqTGX7Z7C08Zu+UzcfoeAKaf/i8Afpa4glfuS26e9UqJhYiIrBtbdhxgyngpYIazd/wtJ+/5VwqZooMqLn7pq5OaI1BQQJ+jAoDBjtPZDFdENruwPbhtimqTGn5RQymPOA4AELnvr2C8D9epnwNwuuJ6aoOLN9jLF0osRERk3fB5vfyq9PUAtDz4KSof/lMATla/Bp/Hk/Q8Q+5qAMZ6z2Q+SBGRWd7J2bNcJXXJjXc7OVH/m/SZUvxDJ+Db1+GJT9BrSmm+6NosRro2lFiIiMi6cs0H/prbi94AQGViEIDqa9+d0hxjfvvtYWSgNZOhiYgsUBixTe285Q1JP7N/7z7eHvkkoxTCmF3x+Fn8cm7cn9yqx3qmxEJERNaVgM/L9X/w9/wk+FYAHnddxJ69B1OaY66XBaPqZSEiWWIMpbEBAIoqG5N+7H9d0Yi/4SDvmPkE48YP2OIU26uKsxLmWsrfQrkiIrJh+b1ubvz9b/I/97yRXbv24nA4UnreUdoI3eBTLwsRyZbJQTzEACirTj6xCHjd/OO7LudN34ryhoEvst3RRfOVr8xWlGtKKxYiIrIued1OXn3DK2lprE/5Wd9sL4vgTHemwxIRASA6bMvF9psSqstKUnq2vNDLP73nSiZKtvMzcwU3X5T/26BAKxYiIrIBBWtsL4vKeB8YAymueIiIrGS0t41KoJcK9hV6U36+vrSA//nwS+kenWZPbWqJyXqlFQsREdlwqhq3AxBgmsnR/hxHIyIb0cRsD4sRV2XK2zXnlAa8GyapACUWIiKyAQWLi+k3pQAMdpzMbTAisiHNzG6FmvCFchzJ+qHEQkRENqSB2V4Woz1ncxyJiGxEZtSWio0k2XV7M1BiISIiG9Lct4gzw6oMJSKZ556wzfFMcXLN8TYDJRYiIrIhRQqqAEiEVRlKRDKvYLoXAE9p6pXrNiolFiIisiElCu1WKOd4b44jEZGNKBi1hSH8Fcl33d7olFiIiMiG5Cyx2xN806oKJSIZFpmg0EwAEKxuynEw64cSCxER2ZB85XZ7QlFEiYWIZJYJ24Pb48ZPqEJVoeYosRARkQ2pqMImFsH4UI4jEZGNZqzf9rDoNWVUBwtyHM36ocRCREQ2pNLZ7QllhElEpnMcjYhsJGO9bQAMOivwuvVxeo7+TYiIyIZUUVnNjHEDMNzfkeNoRGQjmR6yKxZjXm2DOp8SCxER2ZDcbheDjjIARvvO5TgaEdlIYrPN8aYK1BzvfEosRERkwxp1VwAwMaAVCxHJHOeY7Y+TKFJicT4lFiIismFNeCsBiIx05TgSEdlI/FO2P46zRM3xzqfEQkRENix13xaRbCiM9AEvlLUWS4mFiIhsWPHZbQrqvi0iGZOIE4wPA1AUUnO88ymxEBGRDctVXAuo+7aIZNBEPy4SxI2D8qqGXEezriixEBGRDUvdt0Uk02aGOwEYIEhNaWGOo1lflFiIiMiGpe7bIpJp4dny1f2UU1LgznE064sSCxER2bDUfVtEMm1i0JavHnVX4HA4chzN+qLEQkRENix13xaRTIvMboWaUNftCyixEBGRDUvdt0Uk08xYDwCRQFWOI1l/lFiIiMiGpu7bIpJJrglbvlpdty+kxEJERDa08dntCpGRzhxHIiIbgX/KNsdzl9TmOJL1R4mFiIhsaNECm1gkwj05jkRENoKi6AAAfnXdvoASCxER2dDUfVtEMiYepSQxAkBxZWNuY1mHlFiIiMiGpu7bIpIx4304McSMk7KqulxHs+4osRARkQ1N3bdFJFOmZ0vN9lFKVbAgx9GsP0osRERkQyuqbACgLD6Q40hEJN+Nntd1u9inrtsvpsRCREQ2tPKaZgCCjBObnshtMCKS1yZnu26H1XV7UUosRERkQyuvCDFpfAAM97bnOBoRyWfRkS4AJn3qur0YJRYiIrKhuVxOBpy2Sd5IT2tugxGRvGbC3QBE1XV7UUosRERkwxtx228XJwfP5TgSEclnrknbHE9dtxenxEJERDa8SX81ANGhjhxHIiL5zD8923U7qK7bi1FiISIiG16scPZDQLgzt4GISF4rnu26XVDekONI1iclFiIisuE5graRlWeyJ8eRiEjeikUIJkYBKFLX7UUpsRARkQ3PU24/BBRO9+Y4EhHJW+P2z4+IcVER0hmLxSixEBGRDa8o1ARAWUxN8kRkdSZnz2j1Uaau20tQYiEiIhte2WyTvDIzQiI6k9tgRCQvhfttYjFAGUXqur0oJRYiIrLhVVbVMWPcOB2GkT6VnBWR1E3Nd92uzHEk65cSCxER2fA8bhf9DjXJE5HVm++67VfX7aUosRARkU1hdPZbxvH+9tVP0vuc/SUi+antQeh9dlWPOkZtuepooDqTEW0oSixERGRTmJhtkhcZXl2TvLFHvk/8b65m+lsvIzE5nMnQRGQtPHUL/OOvwT+8GmbGU37cP2G3UUaLmzId2YahxEJERDaFaMA2yTOjXSk/O3z3/0fxbR/ARQK/mabtkVszHZ6IZNPpuzD/9UH788woPPdfKU9RNGX/7PBUNmcwsI1FiYWIiGwKZq5J3kR3Ss/13vv3lP3y0wB0GLudauqZn2Y2OBHJnu6nMf/2dhyJGH2mFICpR7+X2hyxGYLxQQBKanZkOMCNQ4mFiIhsCt6yBgACKTbJG3/g7wH4D98beOySPwOgcfA+iEczG6CIZIW568s4IuPcH9/Hb0Q+R9w4KOh6GIbOJD/JyDmcGCaNj5ra+uwFm+eUWIiIyKYQqLT7ooOx/qSfSUyFaZo+DsCu1/0frnv5axg0xRSbCfqf+2VW4hSRzJpsexyA/yfxZq6/8gruSxwAIPHE95OeY6LfJiHnTIiG8kDmg9wglFiIiMimUFbdDEBFYggTjyX1TPuRO/AQ55ypZs/ufZQVF3C04EoA+h77UbZCFZFMGe+nMDJAwji4+ZWv5I9fu5f/cb8CgMjj/wyJeFLTjHaeBKDXWU2hmuMtSYmFiIhsChU1DcSME7cjQXgguQPc4efuBOBM8aW4XfavzMi2GwGo7LwLjMlOsCKSEfHupwFoNdVct78Zr9tJ0aHXMWoC+Kd64Mw9Sc0z3X8WgLC/NluhbghKLEREZFPw+7z0O8oBGO45m9QzwZ4HAIhveen8tW2HX8eMcVMd62KiUz0tRNazoTNPAHDSsYWm2S1Mb7x8O7fGrwJg5ukfJzWPGW6z44sbMx/kBqLEQkRENo1hl63qNJZEk7xIuJ8tUbuvuuHSX5u/3lJfzVNuu0f73EM/zEKUIpIp0+eeAmCwaCdOpwOAvXUltAavAGDyzANJzeMbn+1/U7ol80FuIEosRERk05jwVQEQGVq5SV77E7cDcJImtjdvnb/ucDgYqbsWgHj7Q1mIUkQyxTdoVxXjVfsWXG+66HoAguOnYXp0xXlKpu32SX9o6wojNzclFiIismnMFNpeFmZo5a1Qk8fvAuBc6eXz33TOKW7YY/93cnVdvEVkDcRmKJ9qBaBoy8ULbu3ftYO2RBVODKbjseXniUxQkhgBIFinHhbLUWIhIiKbhqncBUBg9NSKYyv7HwbA2XLdBfdK6+08oVi3DnCLrFf9J3ATZ9QE2LJ154Jb++qCHMFeG33+vmWnmTtfMWoC1FVXZyfWDUKJhYiIbBrFTfsBqJpefsViaqCNungnceNg66WvuuB+7ZadtskWM0wNJ1dhSkTW1ljbkwAcM1vYXVuy4J7f46Kn5CAAM2eX39I41nMagA4Toq60IAuRbhxKLEREZNOo2263Q1SaIWbGh5Yc1/6ELTP7vLOFprqaC+6XFhfR47AHwfvbjmchUhFJ12irTSw6fdsIeC/sPeFssj1pgoNPLdvPIjybWPS5avB7XFmIdONQYiEiIptGqLKSHioA6Dl1ZMlx02fvB6C39GIcDseiYwbc9rxGuOv5zAYpIhnh6DkKwGTZnkXvN+66lHHjx5+YgP6lvyCYme1hMVZQn/kgNxglFiIismk4HA66vc0ADLc+veS40gFb+56mlyw5ZqywAYBI/+mMxSciGWIMpWGb9HvqDi465OKtIY4ktgEwffbBJadyjNgzFrHihgwHufEosRARkU1lvNh+kIj3Hlv0fnxqlIaI/Yaydv+1S84TC9qyk67R1swGKCLpC3dRmAgTM06qth1adEh1iZ9T3r0AjD5//5JT+SY6AXCUqYfFSpRYiIjI5lJlt0UUjJxc9HbH0XtxOQwdJsT2bTsXHQPgqWwBoHDiXOZjFJG0RHqeAeCsqWVXY2jJcVM1lwHg7V665GzpbA+LgqptGYxwY1JiISIim0pRg22UFZpuXfT+yAlberKt8AAu5+LnKwCKam3SURlRVSiR9ab/nC0p3emsoS7oX3JccMdhAMqm2mG8/8IBUyMUmnEASutaMh/oBqPEQkRENpW6HbYyVMgMLloZyt/9KADTNZcvO0/Vlt0AlBImNjmS2SBFJC2TffZcxHRB7ZIFGAAObG/mWKIJgMSZX15wP9HzLAC9ppT6qqVXPsRSYiEiIptKVShErykHoOfUUwtvxmM0TtoPEqW7X7rsPNWVlQwaWxu/v/1E5gMVkVUzox0ARItqlx23u7aYB7gIgPCzt19wf+L5ewB4LLGb2mVWPsRSYiEiIpuKw+Ggy9cMwEjbwspQg2efJMA0Y6aAnfuXX7FwOh30uu2HlpFOJRYi64lnohsAU9K4/DiXk4Gaa+zPZ+8GYxbcj5y8G4BThZfgdulj80r0b0hERDaducpQsZ6FlaG6j94DwPOe3RQHVv52ctRvy09O9arkrMh6UjRtEwtfxfKJBUD1vuuZMl4KIwPQ++wLN6JTBAePAOBouS4bYW44SixERGTzCdnzERdUhmp/GICRykuSmiZSYstPOobPZi42EUlPIkFpzB7ELgytXCL2mj31PJSw1eKiz//ihRvnHsZtonSZcnbvvSgroW40SixERGTTKWo8AEBo+oWEwEyH2Tpsa9l7ty3dv+J8znLby6JgvD3DEYrIqk0O4CFGwjgoq105sdgWKuIp36UAjD378/nr48fvAuChxF6u3FaZnVg3GCUWIiKy6dTuOATMVobqt8lF6x3fppBJTps6Dlz1a0nNU1izA4Cy6c6sxCkiqZsZtBWh+iilvrxkxfEOh4N4yysAKOl7FCITAERO3gNAe/AyggWe7AS7wSixEBGRTac6VMXjjv0AnPu3j0EiTtGRvwPg2aa3UVqYXPWX8sZdAFQm+jGxmewEKyIpGelpBaCXiqQTgr37L6HDVOI2UWi9H2bGCA7bJnue7TpfkSwlFiIisuk4HA5Gr/sSMeNk+8CddN/yB4RiPQybIg7e9LtJz1Nb38SE8eFyGIY7dYBbZD2Y7G8FYNhTvWwPi/NdtSPErxL2HMXUQ9+B5/4LF3HaElXs33sgW6FuOEosRERkU3rZdS/jZ4GbAah9/p8BeKD0dTTXJt8Ey+dx0+OsBmCg8+QKo0VkLUSHzgEw6a9J+plggYfnK+x2qIIzP4f/+iAAD5l9XN5clvkgNyglFiIisik5HA62vunLDMw2uYsYFzWv/P2U5wl7bCIyNXAuo/GJyOo4wvbMU2yF5ngvVrr/Vbw38lGOOnbOXztXcRUBrzuj8W1kSixERGTT2tvSxB1bPgrAL/w3csm+PSnPMeWvAiA20pXR2ERkdXyTtoeFo3TlHhbne/PlDTxTfA03T32eX5/5Ah+M/AHOva/PRogbllIwERHZ1G5+2+/zj3ddwUsv3pv0fuzzxQtrIAyOcSUWIutB8UwPAP6KppSeqw0WcPf/uZ5bj3TxD/cXc+/IFB85VJ+NEDcsJRYiIrKpFfrcvPvVV69+gmA9dINnojdzQYnI6sSjBONDABRXb035cb/HxZsvb+TNl6e22iGWtkKJiIikwVtmv9EsnOnLcSQiwlg3Tgwzxk2oRqsNa02JhYiISBoKK+12i9JYf44jEZGJ2VKzPaacutLC3AazCSmxEBERSUNZtU0syhlVkzyRHBvtOQtAnzNEgdeV42g2HyUWIiIiaaisrmPG2COL4b6OHEcjsrlNDbQDEPZW5TiSzUmJhYiISBp8HjcDjnIAhnvbchyNyOYWH7b9ZKYLUuthIZmhxEJERCRNw+5KAMbVJE8kp5xjtuxzrFgHt3NBiYWIiEiaJma3XUSGtBVKJJf8s83x3GUqF5sLSixERETSFAlUA5AY7cxxJCKbW0nUVmcLVCqxyAUlFiIiImkyxXY/t3uiJ8eRiGxisRlKEqMABKu25DiYzUmJhYiISJrcpXY/d8G0muSJ5IoZs9ugZoyHUFVNjqPZnJRYiIiIpKmgogGA4qia5InkysSA3YrYa0oJlfhzHM3mpMRCREQkTSVVzQBUJAbBmNwGI7JJjfbZHhaDznL8HjXHywUlFiIiImmqrLX7uX1EmQ5r1UIkF6aG7IrFmKcyx5FsXkosRERE0lRSFGDQlAAw1N2a22BENqnYiE0spvzqup0rSixERETS5HA4GHJVABCe3Y4hImvLMWarskUDOridK0osREREMiDsCQEwrSZ5IjnhnuwFwDFb/lnWnhILERGRDJgusE3y4iNqkieSC4EZe77JU1aX40g2LyUWIiIiGRAvtN+SOmZr6YvI2iqJDQAQqKjPcSSblxILERGRDHAG7bekvqneHEcisgnNjFNoJgEIhppyHMzmldXEYmhoiLe97W2UlJRQWlrKe97zHsbHx5d95vrrr8fhcCz49f73vz+bYYqIiKTNV2a/JS2cUfdtkbUWD9uVwjFTQKhS5WZzxZ3Nyd/2trfR3d3NL37xC6LRKO9+97t53/vex7/8y78s+9x73/tevvjFL87/cyAQyGaYIiIiaSusst+SlsUHchyJyOYT7m+nDOgzpWwp8uY6nE0ra4nFsWPHuP3223n00Ue57LLLAPjGN77BTTfdxNe//nXq6pY+WBMIBKipUakwERHJH2XVtklekHESM5M4ffpSTGStjPd3UAYMuyrY5tJO/1zJ2r/5Bx98kNLS0vmkAuCGG27A6XTy8MMPL/vs97//fSorK9m/fz+f+tSnmJycXHLszMwM4XB4wS8REZG1VllZxaTxATCsXhYia2quzLO6budW1lYsenp6qKpa2PnQ7XZTXl5OT0/Pks+99a1vZcuWLdTV1fH000/ziU98ghMnTvDDH/5w0fFf+cpX+MIXvpDR2EVERFLlcbvocpSzhW5Ge9uoaNyd65BENo3YaBfwQtlnyY2UE4tPfvKT/Nmf/dmyY44dO7bqgN73vvfN/3zgwAFqa2t5xStewenTp9m2bdsF4z/1qU/x0Y9+dP6fw+EwjY2Nq359ERGR1Rr1VEK0m4n+c7kORWRTcc523Y4XKrHIpZQTi4997GO8613vWnZMS0sLNTU19PUtrIwRi8UYGhpK6fzElVdeCcCpU6cWTSx8Ph8+ny/p+URERLJl0lcFUYiMqPu2yFryTtnPnM4SNcfLpZQTi1AoRCgUWnHc4cOHGRkZ4fHHH+fSSy8F4K677iKRSMwnC8k4cuQIALW1as8uIiLrWzRQA+PAqJrkiaylwohNLHzqup1TWTu8vWfPHn7t136N9773vTzyyCPcf//9fOhDH+K3fuu35itCdXZ2snv3bh555BEATp8+zZe+9CUef/xxWltbufXWW3nHO97Btddey8GDB7MVqoiISGYU2y/B3JNLnyUUkQwzhtLYIACBSm2Hz6Ws1uP6/ve/z+7du3nFK17BTTfdxDXXXMPf/u3fzt+PRqOcOHFivuqT1+vljjvu4FWvehW7d+/mYx/7GL/xG7/BT37yk2yGKSIikhGusgYAAtPqvi2yZqaG8RIFoLRKiUUuZbVBXnl5+bLN8JqbmzHGzP9zY2Mjv/zlL7MZkoiISNYEKuyHmmC0P8eRiGwe0ZEuPMCQKaK6PJjrcDY1dRARERHJkGC1TSzKzDAkEjmORmRzGJ3tG9NHGWUBT46j2dyUWIiIiGRIqHYLcePAQ5zJYR3gFlkL4wO2vPOwqxKHw5HjaDY3JRYiIiIZUlTgZ5BSAAZ72lY3yXSY8W9czdh33wznbRcWkcVFhjoBmPCuXLVUskuJhYiISAYNuSoBGO9bXWLRc8c3KBp8huLWnzF+9KeZDE1kfWl/GL53M9zyNrjt43Dif1Y3z6jdCjUVUKnZXFNiISIikkFjs9+azgytoknezDiFT3z7hbl+/qdatZANK3bvn8PZe+H4f8Mj38bc8lYYS71Us2fM/n8tXtKQ6RAlRUosREREMmimoBqA+GhXys/23PXXFCdGOZcIMWW81I4/y8RzP890iCK5l0gQPfsAAN+MvY7WRDUOkyD6/C9SniowZc8zeSqaMxmhrIISCxERkQyKF9UA4BxP8fB2ZJLAY38NwC9r381tvlcDEL79y1q1kI2n/zgF8TEmjI9/L3oH/22uBmDk6RS3QyUSlEftKkdR9dZMRykpUmIhIiKSQe5gPQC+qdSa5PXe821K4sOcMyGueP3vUfSKjzJjPNSOPc3kibuyEapIzkyc/BUATya28+Pfvw6z7RUAFHX8ChLxFCbqw0OMuHFQUduchUglFUosREREMshXbvd5F0dSa5I3/eS/A3B/1VvZWVfODZdfxM+8Lweg7b5/zWyQIjkWPnEvAKcDBykr9NJ80bWMmgAF8TB0PpH0PDP9ZwHopoLGCjXHyzUlFiIiIhlUXNUEQHl8IPmHotPUTT0PwI6rfx0Al9NB4Ta7PcQ1eDKzQYrkkjEU9jwCQLT+JQBcs7OG+xIHABh/9vakpxruPgNADyFKCtwZDlRSpcRCREQkg8prmgEoZIrY5GhSzwycfBgPMfpNkD179s9fL27cB0BoujXTYYrkzkg7JdE+osZF9Z5rACgr9HI6eBiAmePJFyyY7LOJxYi3Rs3x1gElFiIiIhlUXl7OmCkAYLi3Paln+o7dB8BJ7x4CPs/89dqWiwAoMyPExwczHKlIbsycse/3Z8xWLt7+Qu8J/+5XAlA2chQmh5KaKzZk+8Woh8X6oMRCREQkg1xOBwPOCgBGk2yS5+h4FICxyksWXK+rrqTT2IZ7fWeeymCUIrkzfMyer3jOs4+GssD89UsP7OVYohEnhsSp5AoWuMO2h0Ui2Jj5QCVlSixEREQybNRtk4HJ/nMrDzaGqtGnASjY9pIFt1xOB90ee2ZjuO2ZzAYpkiOezocBmKy5fMH1ixpKech5MQDDR5MrOxuYsv1i3OVbMhihrJYSCxERkQwbL7AlZ+ODZ1YcOzPUTkVikKhx0Xzg6gvujxW3ABDtPZ7ZIEVyYWKQiilbyalk17ULbrldTqZqrwTAdDy+8lzGUBaxPSwKq1syG6esihILERGRDIuWbQPANXRqxbGdT/8SgOcdzTRWVVxwP1GxCwDfsCpDSf6L9diVt9ZENYd2XpgM1Oy5CoDyqVaYGVt+sslBfMzY8bVqjrceKLEQERHJMG/1bgCCE2dXHDt55kEAekoOLFrVJlC/F4DyqZXnElnvettOANDprGFHVdEF93dv306XKbfnLDqPLDtXZND+f6LHlFFfWZrpUGUVlFiIiIhkWGmTTQaqY52QSCw7trDPNgNL1F+26P2qloP2fxP9mJW+wRVZ56b6bDIw7q/D6bwwkd5RXcQzxq74DZ16eNm5RrrsVsNuKikv9GY4UlkNJRYiIiIZ1rB1NzPGjZ8I433LrDREp2mYsdulKne/dNEhjfUNDJgSAAZbdYBb8psZbgVgpmjxKk4el5O+YpuYT7c+uuxcE702sRj21KqHxTqhxEJERCTDgoUFdDhqAOhbJhk4vzHert37Fh3jdTvpcNvKUAOtRzMfrMga8o7b8rCULV3FKVFryy4XDjy97FxzPSwm1cNi3VBiISIikgUDfvvBabzjuSXH9D33KwBOvagx3ouNFNpDrjPdxzIYocjaK5nuBMAXWrqKU/nOKwAoi3TBxNKNIZ1hW845VtKQwQglHUosREREsmBytkxson/pak7zjfFClyw5BiBWvgMAz5AqQ0kei05TFreJQrB225LD9mxt4kzCrvjFlyk7WzBpe1i4lln9kLWlxEJERCQLHCGbDBSEl+hlYQzV4dnGeC0vWXzMrILaPQCUTqzcF0NkvTIj7QBMGB+1tfVLjttaUcgxx3YABk8+tMRkhtK5HhZVKjW7XiixEBERyYLiepsMVEy3LXp/erCN8sTQbGO8a5adq2KrrQxVHe+G2ExmAxVZI6PdpwHoMFXUlQWWHOd0OhgM2jNH0fYlViwmBgiYSQBK65Ze/ZC1pcRCREQkC6q2HgCg0gwRnxq94H7X0Rca4zVUlS87V9OWFsZMAS4SjHQ+n/lgRdbAaLetgNbvrsHjWuEjaIPdHlg8dBSMueB27NwjAJxM1NMQWv7/P7J2lFiIiIhkQV1NDf0mCEB/67MX3J84bbd49C7RGO98AZ+HPmclAIPdrZkNVGSNRAZs6eWwf+UqTlU7riBmnJTEBiHcdcH94RP3AXDUsZPKIl9mA5VVU2IhIiKSBS6ngy63rdU/1H5hYlHUP9cY7/Kk5ht1VwEw2b/41iqRdW/YvnejxYv3sDjfvi01HDe2zHLkzK8uuB9vsysWQ+WHFm20J7mhxEJERCRLwoXNAMz0nFhw3USnzmuMt/z5ijmTBdUARIc7MhegyBryT9j3rrN85SpODWUFPOK6GICxo/+z8GY8StmI7Q/jaV6+8IGsLSUWIiIiWRIts5Vt3EOnFlwfOPnIeY3x9ic1V6zQbh9xjF24LUQkH5TO2PduwTI9LOY4HA6G666149vvgUT8hZu9z+Az04yaAM27L85GqLJKSixERESyxFezC4DgROuC6y80xttLgc+d1FzOoE0sfJPdmQtQZK3MjFGcCANQWr8jqUeaDl5P2AQIxEag68n562OnHgTgSbODQ006uL2eKLEQERHJkrImuxpRHeuAmbH56y80xkv+21Zvud1vXjTTl8EIRdZGbLAVgGFTRH1NVVLPXLunjnsTtrra5LO3zV8fO3U/AG0F+wgWLN2xXtaeEgsREZEsadq2hzOmFh9ROu7+O3txZozG0ceAlRvjna+42iYWZTElFpJ/hrvsdsBOQlQX+5N6prrEz8mSwwDMHLt9/nqg1/a2iNYlV/hA1o4SCxERkSwp8nt4vPZ/AeB//NuQiNN5+59TbMY5a2rYfunLk56rrNbuSy9mksRUOCvximTLeI9tjjforkmpipNv96sAKBt5Fsb7YKyH0pluEsZBxc7DWYlVVk+JhYiISBbtu+l3GTZFVEa7Gb7/Hyg78m0AHmx6P7VlxUnPE6qoYMwUADDc25qNUEWyJjpoe1iMB+pTeu7Kg3s4mmgGIP78HUTbHgbghGnk4PaVy9bK2lJiISIikkV7m2q4p+RmAEru/DgBM8kxs4Xr3/i+lObxuJzzTfJGe9TLQvKLc6QdgFhxU0rPHWos40HnpQCYn/0Rjp98GIBnnLtoqSzMbJCSNiUWIiIiWRZ6+QeJGBcuEgAc2fH71JWl/qForknehJrkSZ4pmLSlZl0VK/ewOJ/L6WB4y6+RMA7cM8O4Z4YB6Ky6bsWO9bL2kqtxJyIiIqt21UX7+flPr+PXYnfxpNnJq17/9lXNM1lQDVGIqUme5JniiC06UBRKLbEA2HHRVdz8/Jcpd4wxbgroNWW8bc/VmQ5RMkCJhYiISJY5nQ4cr/oS37o1QOlLf5eLk6yK82KxwloIg2OsM8MRimRRdJoSM9vDoqY55cdfvb+WXzx3mMHxCOV+N3uDft56RWpbqmRtKLEQERFZAzdesZ+Ji75HYZIN8RbjCDZAN3gnezIYmUh2JcLdOIFp4yEUqk75+QKvi7/57UszH5hknM5YiIiIrJF0kgoAX7mtgqMmeZJPwn32TFAP5VSVrG61TvKDEgsREZE8UVxt96erSZ7kk7E+WxFq0FmJx6WPnhuZ/uuKiIjkibLarYCa5El+mRo8B8CYN5TjSCTblFiIiIjkiVBFBWETANQkT/JHfNQWG5j2p36+QvKLEgsREZE84XE56XdWAGqSJ/nDOdYNQLyoNseRSLYpsRAREckjapIn+cY31QuAM1if40gk25RYiIiI5JHJArudRE3yJF8UzTbH81c05DgSyTYlFiIiInkkVmi3k6hJnuSFRJyy+CAAxZWNOQ5Gsk2JhYiISB5xBO23vmqSJ3lhoh8XCeLGQVmNEouNTomFiIhIHnmhSV5vjiMRWdnEgO1h0U8pNaVFOY5Gsk2JhYiISB4pqpprktef40hEVjbaa4sM9Dkq0u48L+ufEgsREZE8Ul6nJnmSPyYHbHO8sLsyx5HIWlBiISIikkfOb5I30quSs7K+RWerl02qOd6moMRCREQkj5zfJG+kpzW3wYiswDHbHC9WWJPjSGQtKLEQERHJMyOzTfImB7RiIeubZ7Z6maOkLseRyFpQYiEiIpJnpmab5EWH1CRP1rfCadscz1OmUrObgRILERGRPBMttN/+qkmeZEV0Cp7+d5gZS28eYwjGBgAoDKnr9magxEJERCTPOIM2sUirSV5kkti/vZPEbX8IU8MZikw2hF/+GfzwvfBvbwdjVj/P9CgFTANQWt2cmdhkXVNiISIikmd85U1Aek3yBh/9d9zHfozzkb8l8peXwtH/yFR4ks8ScaYe+xf785m74dG/W/VUkRG7VW/EFFJdUZaJ6GSdU2IhIiKSZzLRJG/0yR8DMG08eGcG4T/fQ+SZWzMRnuSztvspmO4lYRwAJH72GRg4uaqpRntscYEeKigLeDIWoqxfSixERETyTNpN8qJT1A08AMAXyv+MW+NXAXDm/v/MWIySn8KPfB+Af4tfz33xfTjj0yR++D5IxFOea7y/HYARVyUOhyOjccr6pMRCREQkz6TbJG/k2Z/jZ4ZOU8GH3/lW3AffCEDh4NGMxil5JjqN7/mfAHC86tV8zf9hxo0fZ9cT0PlEytNFBu17c8yvHhabhRILERGRPLOwSd7ZlJ8ffOzHADxZcJia0gKqdx0GoDZyFiKTGYtT8ot5/nZ88Qk6TQUXX3MTf/jml/NQYg8AwyfuS33C0XMATBfWZzJMWceUWIiIiOShF5rktaf2YCJOZdddAMR2vBqAnTt20mdKcZNgtDX1b6ZlYxh9xB7a/h9zNa/cV8tLd4ToDR4EYPzMQynP550th+wIqofFZqHEQkREJA9N+Web5A2n1iRv6uxDBBMjhE2AvYdvAqC4wMtp9w4Aeo8/mNlAJT/MjFPUbhPOwZbXU+hzA2DqLweguD/1hLNophsAb2VzZmKUdU+JhYiISB6KFs02yQun1iSv+2F7QPth92XsqH2hBOho2X4A4h1asdiMYn3HcZsofaaUKw5fO389tPswceOgNNoH4a7kJ4zH5quWFddszXS4sk4psRAREclDq22S52+7G4CxLa9cUKnH2XAJAMHhZzIUoeSTgVb7372VOq7ZXjl//aKWBk4Y2zdl+mzy26HMWBdu4kSNi1DNlswGK+uWEgsREZE85K1YRZO86BRVM60ANF30sgW3qnZdCUBN9BzMjGUkRskfE10nABgqaMLjeuHjYU3Qz3H3bnvvxANJzzfea4sKdJkKGiqKMhiprGdKLERERPJQcSj1Jnnhtqdxk2DQFLNr564F93Zu20aXqcCJYejUoxmNVdY/M9sEb7r4wm1L46FD9oeOR5Keb6T7DAB9rir8Hlfa8Ul+UGIhIiKSh8pqm4HUmuT1Pm8/GJ5xtVBc4F1wL+B1c8a7E4D+EzrAvdkUjLUC4AztvOCev8WWI64cOwaxSFLzTQ/Y+cJe9bDYTJRYiIiI5KGqysqUm+RFOo4AMBzcs+j9cNkBAEznk+kHKPnDGCqmbdniorpdF9zetusihk0RXhPB9CTXRDExbOebLqzLXJyy7imxEBERyUMel5N+h22SN9rTmtQzhUPPAmBqDi5639toD3CXj+oA96YS7sLPDFHjomrLhYnF/oYgTxlbjnj4+eTOWbjDtgxyokQ9LDYTJRYiIiJ5atBbC8Bk76mVByfi1EyfBiDYcumiQ2r22C0vVbFuzPRoZoKUdW+86zgA7aaKrVWlF9z3uV10FtlyxBOnk9smVzhtS9N6K1QRajNRYiEiIpKnJgqbAYj1n1xx7FT3MfxEmDA+WnYtvmKxfUsjw8ZW8BnuOpOxOGV9G263K1ldrvr5xngvZuptMlow8PTKExpDWbQPgKLqlswEKXlBiYWIiEieipdvA8A7unIS0HPCVno65WymqiSw6Bi/x0WvswqAke7TGYpS1rvpnucBGC1cenUhtMN24C6f6YCZ8eUnnOjHR4SEcVBep+Z4m4kSCxERkTxVUGMr+AQn21ccO9luO2r3F124h/58I/Pbq5RYbBauYfvfOla69OrCzpatdJtynBhi3csf4J4esD0seimjvjKYuUBl3VNiISIikqfKmvYCUBXvhnh02bG+fnsgOxY6sOy4qcIGAOJDyVWakvxXNNEKgLvqwlKzc7aUBzhBMwBDpx9bdr65bXQ9jhAlfk9GYpT8oMRCREQkTzU0tTBpfLhJML7cAW5jqJ60212Kmi9Zds5E0FbxcY+dy1icso7FIlREewAoa9y75DCn08HA7GrXZNvy5Ygnem1iMeKpzlCQki+UWIiIiOSpkgIv5xy2T8BA63NLjosOtVFsxokaF427l08sPBXNABROdmUsTlm/EoNncJFgzBRQ39C87NhY1T4AfAPPLj9utofFVKA+IzFK/lBiISIikscG/XaFYa5k6GJ6Tsx23KaBxsqyZecrrrH77Mtnv8WWjW244xgAraaGhvLFD/XPmVvtqpw8vezWu7keFnH1sNh0lFiIiIjksaniZgASA0tvhRo7YytCdQV24XQ6lp2vot42QithHDM1kpEYZf0Kn7MrXb3eRtyu5T8WbmnZS9gU4CGK6T+x5LiC2dUud3lT5gKVvKDEQkREJI85KrcD4A+fXXKMt8dWhJqqOrTifDWhSgZNMQDD3eplsdHN9UCZLF65LOyOmhKOG1uSduTM44sPMoayaDcAgSqVmt1slFiIiIjksUCtPVBbPr1EydlEgtoJ+6108bbDK87ndTvpm+1lMdyVREdvyWvu0dnqX2UrJwF+j4suv13RCrc+sfig4bMEzBQzxk1Z/dJVpmRjUmIhIiKSxyq32Eo+lYlBzMzYBfenu49RaCaZND627b88qTnnellM9S29CiIbQ2DanqUJVDUnNX6q0h7gdvYu3sti8qzddnfMNNFUVZp2fJJflFiIiIjksYa6eoZMEQDDHRfue+969j4ATjhbqC0rSmrOafWy2BwSCcpi/QCUVCe3bcnXcAiA8rETYMwF94dOPQzAWe8uSgPezMQpeUOJhYiISB7ze1x0umxZz6H2C0vOTrfaD3p9wQM4HMsf3J4z18vCE165o7fksckBvERJGAflNVuSeqRu+yEixkVhYhxGLnx/OLpsj4vxioMZDVXygxILERGRPDfit9V3provXLEoHnjK/lCf3DYoAO9cL4sp9bLYyMb7WwHopYy6iuKkntnTUMlJY1e0Jlpf1IE7EacibJNb/5bLMhan5A8lFiIiInluJji7jWXo9MIbkQlqI7ayU2j3VUnPV6ReFpvCaLc9Q9PnqCDgdSf1TDDg4VnPAQDGn7194c2B5/GbaSaMj8adhzIZquQJJRYiIiJ5zhWylXoKx1oXXB88+QhuEvSYMnbt3J30fJUNtppPMROYqeGMxSnry+TsisWopyal53prrgOgsO0uSCTmr4dP2213z5qt7G8sz0yQkleUWIiIiOS5ogZbqadu5jScVxmq//j9AJz27qbQl9w30gA1oXIGTAkAw13qZbFRxYZth+ypgtQSi/qLbmDC+CiKDkDPU/PXR0/bDu/t/l0UpfB+k41DiYWIiEie27L7Es4mqvETYeDRH7xwo8PugQ9XXJTSfB6XellsBs6wTSxixfUpPXft3np+lbCHs8ee/un8dXfPEQCmQocyEp/kHyUWIiIiea6qpIDHyl4NwNQj/2wvJuKERm2vAX/zlSnPOeqzvSwm1ctiw/JP2jM0rtKGlJ6rLPJxKmjP7ESO/Y+9GItQOf48AIUtyRcKkI1FiYWIiMgGELzyt0kYB43hx0kMniX8wN9TkRggbApo2H91yvNNFdpvsRPD6mWxURVHbGLhDyVXavZ8/n02ka0YfQbGejG9z+IhyrApomXH/ozGKflDiYWIiMgGcO3ll/AI9gNd78//HNddXwTglqJ3sL2+KuX5zGwvC3f4XOaClPUjFqE0YQ/mB6ubU378JQf38nTCViOLHvspY0/+JwDPmBb21JVkLEzJL0osRERENgC/x0Vb0xsAqD3x/6MwMcaziS285C0fT7ox3vm85bY3RmA6gyVnJ4fgzC8X7dgsSZgcgrv+BPov7FeSqsRoJ04MM8ZDVU1qW6EA9tWV8LDbbnly3/ZRSh77BgDthQfwuV1pxyf5SYmFiIjIBrHzuv/FuPHP//Ovdn2Kg02Vq5qrcHZ7TGm0LyOx0fMMsb++Cv7pdcSf++/MzLmZJOIkfvAuuPdrRG/932lPN9rbCkC3Kae6xL/84EU4HA6mW15lf8YwRDH/b+yNPL/tXWnHJvlLiYWIiMgGcWhbHXd7bY+BHzpu4H/9+m+ueq7SWtskr8yMQnQ6vcBO3UHs716Fe7wbgI4Hbklvvs3o7j/FefaXALjOPQijHWlNF+61h/IHXCHcrtV9HNx18Uv5cOQDfCzyfg5Pf4MfBd/BW65Kvl+KbDxKLERERDYIh8OBeeWX+Kj5CIW//hcEA55Vz1VTXcOk8QEwNpDGAe7e50h8/824YxOcTthKU+Xdv4JEfPVzbjYnbodffR2AflOCE8PUkz9Y4aHlTQ+0AxD2pdbD4nzX7gwR3vHr9La8kf/vHVdx58euZ6/OV2xqSixEREQ2kNddsYu/+MLnufFg6pV+zhfweeh1VAAw3LX6krMdD/8Qp4nzcGI3X2n8FmEToDgxSqT90bTi2zTiMWI/+gAA3429ir9KvBmA6Sf+La1pEyP2UP5MoHbVc/g9Lv7x3Vfwz79zJa/cW43LmfpZHtlYlFiIiIjIoobd1QBM9LWueo6Zsw8C0F71cv72PdfxsPMQAD2P/STd8DYFM3gS9/QgE8bH/ds+wpZrfouocVEWPpbWIW7XeJedvyS15ngiy1FiISIiIoua8NvEIjK0ypKzxlA1+jQAJTuvwel0MFRnz4C4z/wiIzFudIOnnwDghGni/77lMm68fB+/nO16Pf7Yv6563sCUrfblKWtMP0iRWUosREREZFHRwjr7wyoPCsf6T1KcCDNtPGzd/xIAQhe/FoC6yRMwlsFSthtU+KxNLLoLdlAa8NJYHuBoma3GlHj6B6su3Vsa7QWgoKo5I3GKgBILERERWYKj1PY38E50rer5nmfvBeBZxza215QDcMWB3TyV2AZA/xMqO7sSZ98zAEyV752/Vn35G5gwPkqmOqD7qdQnnQ5TZCYAKK/ZmpE4RUCJhYiIiCzBV2Gb5BXN9K7q+cnTDwDQU3wQ5+zB3iKfm1OlVwEw/sxtGYhyAzOG8vBxAHyNF81fftXF23jc7AJg4OQjKU8bGbYVoUZNgOrQ6vqciCxGiYWIiIgsqmh2m0x5bHVN8or67DYe03DFguuuXTcCUDXwkLpwL2e8l5LECHHjoGb7JfOXK4t8jBTtAGC09cmUpx3ubgWgh0rKC70ZCVUElFiIiIjIEirq7DaZQqZITI6k9vD0KDWRVgCq9r50wa39lxwmbhwUmgkSY6tbDdkMxtts0nDW1LKrqXrBvWjIbo3yDBxLed6J3jMADLircThUIlYyR4mFiIiILKqqopxhUwTASE9qvSyGnn8QJ4ZWU83endsX3NtaXUEXdgvOQPtzmQl2Axo8/TgArZ4WSvwLmx0WNNjKUOUTp1Je9YkMtgIwXlCXfpAi51FiISIiIovyuJz0OUNA6onF4DF7cPu0by9FPveCey6ngx637Z8w0nE8A5FuTPEuW6p3NLj7gns12w4SM06KEmMQTu1wvWO2OV6sqCH9IEXOo8RCREREljTqqQJgaqAtpeecnbaz9kTVpYveHwvYzuCR3ufTiG5jKxq225yctQcvuLezvpLTxq44jLUfSWle30SnnbesKb0ARV5EiYWIiIgsaaqgBoBoKk3yjKF6zG5xKt72kkWHxErt+Q3ncGorIZtGZILKiP13XtZyYXJW5HNzztMMwNCZIylNHZyxKxz+KpWalcxSYiEiIiJLihfbLUvOsc7knxntosiMEzNOtu5dfMXCU22rGhVPpLYSsllEu57BiaHPlLK9pWXRMeESW3I21n00hYmnKUsMA1Bauy3tOEXOp8RCREREluScbZLnn+xO+pm+00cAaKOGplDZomOC9fbcQFW0ExKJ9ILcgPpPPQbA845m6ksLFh9UvQ+AwMiJpOeNzfawmDA+amp0eFsyS4mFiIiILMlfac9ClKTQJG+kzX6D3uNrnm+M92K1zbuIGhc+IkRHOtIPdIOZ7LAHtweLdi5ZEjbYfAiA0HQbxCJJzTvSfRqATkJUlSyRsIiskhILERERWVKwuhmA8sRA0isLiV57vmK8ZMeSY6qDRXRgD4YPtKfei2FZE4PQ/VRm51xrQ7NnTyq2LzmkuWUnYRPATZxEf3KrFmM9NrEYcNXgWiLpE1ktJRYiIiKypMraZhLGgZcYkXByqxaB0ZMAOKr2LDnG6XTQ57HnN0Y7MphYGEP0n94I374WTt2RuXkXMzEIPUchEc/41EWT9kxLoGrx8xUAzZVFPE8jAINJHuCema3uNV5Qm16AIotQYiEiIiJLqigppA97TmK468zKDxhD1XQrACVNB5YdOl5ot1lF+06lFeOCl297AE/vEQDCP/l09s5vGEPiu6+Fb12D+b/b4T9/xyYZmZBIUB7rAaC4dukVC5fTQa/f3h9rO5Lc3CP2jEVUPSwkC5RYiIiIyJKcTgc9Lvvtdrhr5e02seFzFDJJ1Lio37Z/+bFltiqRZySJhCVJA3d/c/7nktHjJJ75z4zNvcDQGZz9dsuXY2oIjv6A6R/9QUamNmPdeIkRM06q6pcvCTtVbg/BO/ufTWpu/4Q9z+Io25JekCKLUGIhIiIiyxotsNttpntWbmbXd8aebWijlvqK4LJjfbMlZ0smM1RydqyH8rbbAfhJ3PbPmLz980kfbE7F0LN3AvBYYifvivwhAO7epyAykfbco912BaebCuoripcd662zyVswfDKpuUumbXUvf6h59QGKLEGJhYiIiCwrErT7/J3Dp1ccO9pmqxktVxFqTlmj/bY9FOuBeCzNKCF8/9/hIs5jiZ08dOAL9JsgRZMdRB/7Xtpzv9j48bsAOFl4Gb/+5nfTaSpwEyfS9kjac4902cSi11mNz+1admzVtosBKIsPwOTQ8hPHZihN2DHBmqXPboislhILERERWZY7ZPfxF46vvLKQ6LUHsSeCS1eEmlO/ZQczxoOHGDODrWnFSDyK4/HvAvBg+a/zx79+Od91v9nGcu83l3lwFYyhtPdhABxbr+V1F9XxjNMeVO975p60p5/ut1vDwv6V+0xsb6qjPRGyz3Uuf8YjPtKBE8OU8VJT15h2nCIvpsRCREREllU828yucqYDjFl2bOHslhxn9dIVoeZUFPlppwaA/rbn0ooxevx2iqP99JsSdl7/NvweF9uufxsAJZOtGdmiNMf0H6ckPsS08bDlomtxOBwMV9oO46btwfTnH7IJ3HTRyh/+K4t8nHU1AzBw+ollx86thHQSorrEn16QIotQYiEiIiLLqm7eQ8I4KGKC+Hj/0gONoWrafiheqSIUgMPhYMBrqxONdSbfPXox7U/dA8CvXC/h5QfsB/LrL9lHvwnab+k7kzvcnIzBZ+z5iifMLi5usYmRf9s1AIRGn0p7W5dv/Jz9oTS5A9bDRXZ1aGaFFYuxHrsS0u+qxu3SR0DJPL2rREREZFl1lWV0UQHAwDIrC9GhNgJMETEuGlaoCDVnosh+eI71p1dy1vTaxMFdfxDP7Ifm8kIvp53NAPSt8G1+KiZP2PMV7cHL8HvsGYjt+y9n1ATwm2ni3U+nNX/JdBcA/tDyFaHmxEN2dcg3eHzZcTMDrQCM+9XDQrJDiYWIiIgsy+V00Ou2zexGzi3dzK7v9BEAWqmjrnz5akZzHKVN9jXGOtKKsWzcbsHy1x9ccH24yJ4PmT6X3of9eYkE5f2PAvZ8xZw9daUcwW4Z63/2ntXPH4/ag9hAsG7lcyoARU2HAKicOr1s3w4zYleTIuphIVmixEJERERWFJ5tZhfpW7qsabjdbsXp9W/F4Vi+ItQcT6Wdt3Cqa/XBTQ1TMfthvGr7oQW34pV7AfAOpneGY47pPUpRIsy48bPt0DXz111OB72ltkLT9On7Vz1/fPgcLhJMGw819cltharfto9p48FvpjHDrUuO843bbt6OsqZVxyeyHCUWIiIisqJYqW1m51qm5Kyz+wgAY6W7k563qMqWPa2I9q46tnCb7Z3RYSrZ3li/4F6g6SIAKidOrXjwPBn9R+02qCfYzcGm0IJ7zi2HASgffHzVrzXcZRO3TkLUBAuSemZ7TSknjf19j7YeWXJc6bRdFfJVJrfFSiRVSixERERkRZ4qu6WoeGLpkrNlo88A4G68LOl5K+rtvEVMYKaGVxXbXDWkNlczRT73gnu12y4iZpwUmzHMWPeq5j/fSKtNYgaC+/G6F36Math/NTPGQ0l8GDO4cs+PxYRnKzf1u2twrdAHZI7f46LT2zIb35OLDxrrpSwxRMI4KGxM7vyLSKqUWIiIiMiKgg32gHAo2rnoPn4zMUBVrAeA2t0vSXremqoKBo09jzHSfWZVsUW7bEIzWnLhmYSWugrOGntYeejMEh+6U+AetTH6q3decO+i5mqOGvsBf+jE6rZDzQzY+cf89SuMXGi8zK4SJXoWr3411W6Tr9Omju0NNauKTWQlSixERERkRXXNu4gaF34iRIYvPGg9cOIhAM6YWnY2J3842Od20eesAmCka3WJhX/IlqpNVO1bdP5On/2wP3w2/cSibKodgEDthdu9Crwu+gN2y9hg2zOrmt8xYuePlqTWwM5dbX/vRaOLl+0dPGkb+p1yb6eyyLeq2ERWosRCREREVlQVLKQDmwAMtF94EHpo9oNrm28XPrcrpblHvPYb9Mn+VSQWiQRV03bbUVHTwUWHjAd32aHdq/uwP286TFnCbteq2LJ4A8B4mU0sGFhd+dyCcZu0OcqaU3qutOUSACojnYs2A4x1HgEgXLp3VXGJJEOJhYiIiKzI4XDQP9vMLtxxYb8EZ7fdajNRufiH++VMBey2n/hQe8rPJobbKDBzvTMWf21Hjf02v3AkvSZ8Uz3PA9BvgjTVLd4LwlVlk5ii8dWtvgQjtjpWoLolpee2NTfTb0pwYoj1XlgSODhst0g56y9eVVwiyVBiISIiIkkZmy05G+1/UclZYwiF7QdX/5bLU543HrTbftzhcyk/2z97buI0DTRXBRcdU7bVfptfFWmHWCTl15gz0G4/sJ9z1BEs8Cw6JthoVzIqIx2QiKf2ApEJShMjAJQl2cNiTkNZAaew/30GTz268ObEAGWxPgCqdiZ/sF4kVUosREREJCmJMvstumdk4bfxiZEOShPDxIyThj1Xpjyvp9z2VQisopfFXHnVbl8LbtfiH2u2bttJ2ATwECPSt/pVi4luu1Iz7F/6/ENd006mjQcvMRJDS1fQWkxk8CwAYROgrja17tgOh4NzRQcAiJ28a8G96XOzB7cTtezZktqhcJFUKLEQERGRpHhr7P782vHnFnwb33v8AQBO0sj2+tCizy6ncLaXRVm0J/Wgeu1KyWTpriWH1AQLOOWwyUv/ycdTf405A/Ysx3TJ0n0gGiqKaMUmBYPti1doWspQh10J6qCKikJvyuGNNLwcgIqe+xaszAyefASAU64Wqkr8Kc8rkiwlFiIiIpKU6v3XMmIKCSZGmDp17/z18Gn7wbUjsGfJVYPlVNTbA89BM4aZGUvp2eJRe+7BVbt0bwaHw8FgwCYv4Y7Vd+AOjNkVBUdo+5Jj3C4nvR67ohE+l1piMdZjV4KGPDVJdy4/3+5LrqXPlOJPTGLaXih3Gz1nt4uNlF5YNUskk5RYiIiISFJ21ZVzv8d2l+598F/nr3t6jwAwHTq0qnlrqqsZNQEAxntbk38wNkNV1FZRKm+5aPmhwWb7w9DZVUQIGEPFjD0DUly3fGfx8WKbxMRS3HYVG2wFYCKQfLne8125rZJ7sYezB5+4df568dzB7bpDq5pXJFlKLERERCQpDoeDyR03A1De9jOIxyCRoHrcHmouakn94DZAwOum22FL2Q51nVxh9Atm+k7hIsG48bO1efnDzq4Ku33JP5H6AXGwDQALzQQJ46Bqy/KJhamwKxrekdQqQzlHbVWseEnTqmL0uV301V4PgPv0z8AYmByiImo7jldsX91/H5FkKbEQERGRpO29+rUMmSJKEiNMnbyHyAN/Q6GZIGwKaN6z+opD870sepNfURhos9ua2hx1hFY4O1BYYxOP8pnOVcU31mkPbndRwZbqimXHFtTaylDlU60pvUZg0q6+uCqaU45vTs2hVzNj3JROd8LA80Q6jgDQlqhiT0tqTfdEUqXEQkRERJK2t76CBzxXATB+5//FcefnAfi25x1LlntNxmSgDoBoCpWUxjvtSsmAr3HFMwmVjfZwd9CEYTqccnxD52wS0+Wqx+9ZvgFgZbM9yxBMjMDUcNKvURaxKwuFNdtSjm/OS/c182DCvv7kvX9F/LZPAHDCtZ0aHdyWLFNiISIiIklzOBxM7HwdAKH+h/CYCPfEL+Ilb/4/qzpwPCdebM8VuMIdyT8z2916qnjlZnL1NVUMmBIAxnqS3241Z6rbnpcYKVh5m1JzXTXdphyAia4Lmwku/gLDFBnbMbuibunD4SsJFfs4EbSJX+DoP1Mw8jz9Jsi91e9I67+PSDKUWIiIiEhKDlz1mvkP6cOmiMcOfYmX7qxKa05XeTMAgcnktyoVjM6eYahY+Rv+Ip+bLofdbjV8LvVeFq5hW2o2Wrp0qdk5wQIP7U7bL2KoLbnKUFN99vfSb0poWGGr1Uq8e26a//ne+AFuinyVq6++Pq05RZKhxEJERERSsqe+jJ/4XsOMcfP/BP6AD73umrTnLKyyH9hLI8n3siifttumAitUaZoz4rPbrSZ6T6cYHRSO24PV7tDO5F6rwHbBnuw+ltT4oU67itLtqKbYv3hX72RdcfFFfDTyfj4Z/R0+7v8s/+/vvIpXH0it4Z7IarhzHYCIiIjkF4fDQei1n+Xtv/otvvDGS1Y8c5CM0jq76lBmRiA6BZ6CZcebySF7XgIINS/dw+J8U8VNMAOJwdSqNZFIUBmxW7RK6pNLYiKl22ESnIOnkho/MdvDYtibfgKwt7YE32W/zUwszm2v2Uv5KprtiayGEgsRERFJ2WsP1vHag3UZm6+2ppYxU0CxY4rJvtME6pdPFsKdxwkCPaaM5trktmGZsq0wAN5w8gfEARKjHfiIEDUuarYkt2LhrtoFXVA0nlyVq/hsf42pwtX1sDifw+HgK288kPY8IqnK2laoP/mTP+Gqq64iEAhQWlqa1DPGGD772c9SW1tLQUEBN9xwAydPpn7ASkRERPJLSYGXdof9tn6wfeXtQ3NnFzqd9RR4k1sx8YdmO3xPJ39AHGC4057J6CBEQ0VxUs8Em/YCUBnphHh0xfHusO2vkQiuroeFyHqQtcQiEonwpje9id/7vd9L+pmvfe1r/NVf/RXf+ta3ePjhhyksLOTGG29keno6W2GKiIjIOjHos30WJjpXrqQ0X6UpsCXp+csabMnZing/xCJJPzfSYb/k7HPX4XEl99GpoWkH48aPhxjxJLZeFU3ZQ+ueypUPh4usV1lLLL7whS/wkY98hAMHkluKM8bwl3/5l3zmM5/h9a9/PQcPHuSf/umf6Orq4sc//nG2whQREZF1YqrYfqhODKy8W8E5ZM8uREpXLjU7p7ZhC1PGi4sEkRT6ZUT6bTzhguQbzNWXBziDrQw1ePbp5QcbQ3nUHlovSqOHhUiurZuqUGfPnqWnp4cbbrhh/lowGOTKK6/kwQcfXPK5mZkZwuHwgl8iIiKShyps/wZ/eOVzCUUTrUDyVZoAQsV+OrDnMQZTKDnrGLavFS1JfnXE5XTQ52sGIHzumWXHmrEefESIGweh+tX3sBDJtXWTWPT02Ey9urp6wfXq6ur5e4v5yle+QjAYnP/V2Kh29SIiIvkoUGe3KpVNn1t+YCJBKGK3DpU07kl6fofDwYDHriKMdSd/hjMwYeNxVya/OgIwGbSrD6Zv+a1dYz22/G03FTRUlqT0GiLrSUqJxSc/+UkcDseyv44fT7LDZIZ86lOfYnR0dP7XuXMr/GEkIiIi61LlFpsklCWGYXp0yXHxkXP4iBAxLuq27ErpNcZnqy5F+5PsZWHMfKnZorrkV0cAnFW2NG1BePmSs8OzPSx6ndUZKd0rkisplZv92Mc+xrve9a5lx7S0pJbNz6mpsd0we3t7qa19oYZzb28vhw4dWvI5n8+Hz+db1WuKiIjI+tFUW0u/CRJyjDLWeYLibVcsOm6g7RmqgXNU01yeXJWmObFgM4yCezS5MxZmYoCAmSJhHFQ1ppZYFDcegGchNN0OiTg4F08apvrt4e5RX+bK94rkQkqJRSgUIhQKZSWQrVu3UlNTw5133jmfSITDYR5++OGUKkuJiIhIfir0uTnhrCdkRhlsf27JxGL03DGqgV5PI9ucjpRew1PZAu1QOJHcDodw90nbL4MyGqrKU3qt+uZdTBsPfkeExFAbziW2UpnZg+QzRen3sBDJpaydsWhvb+fIkSO0t7cTj8c5cuQIR44cYXx8fH7M7t27+dGPfgTYfY//+3//b7785S9z6623cvToUd7xjndQV1fHG97whmyFKSIiIuvISIHt4zBXTnYxsT57b7yoOeX5i2t3AFAZ7QJjVhw/fM5u8e521qW8TWlLqJiz2FWIobalK0N5x22SY0qTPxwush5lrfP2Zz/7Wb73ve/N//PFF18MwN133831118PwIkTJxgdfWEP5cc//nEmJiZ43/vex8jICNdccw233347fr8/W2GKiIjIOjITbIFJYGjpcwmFQ88BEKncm/L8VU07iRknfscMZqwbR8ny24+mem0co/76lF/L43LS7d3Cnmgbo+1Hqbz0DRcOMobQpD3v4alO7byIyHqTtRWL7373uxhjLvg1l1SA7V1x/pkNh8PBF7/4RXp6epienuaOO+5g587U9jOKiIhI/nKFbLnVwFjr4gPiMWom7WHnwq2XpTx/Q2WQc7MlZ4dnu3cva8iWvp1JodTs+SZK7O8n3rtEcZtwJyWJUWLGSdnWi1f1GiLrxbopNysiIiJSXG8rKYVmzi26VSnaewwfM4wbP9t2HUp5fo/LSY/blqYfbl85sfCP2/MPjorVFacxIbsKUTC6eBWq0TOPA3DSNLC7MTvnWEXWihILERERWTeqt+wmbhwEmMKM915wv/fEwwAcd2ylsaJwVa8xOns2I9K7cpO8shnbLyNQvbrGdcX1+wConD67aKI0fPpRANq82ynyZW2HusiaUGIhIiIi60ZjqIwO7Df3Q+3PXXB/ovUxAPqL9uBwpFYRak683B7g9gwv31+CmTFKEyMAVDTuXtVr1bbsJWpcFJhpzOiFlahM91MAjJfvW9X8IuuJEgsRERFZNzwuJ91zW5XOXZhY+PuPAhCtObTq1/DX2O1Jwcnle1nMHdweNMU01Nas6rW2Vpdy1thnR9ueueB+6aj9PXoaDq1qfpH1RImFiIiIrCtjAXtQOtL7/MIb8RjVswe3gy2pH9yeU7FlPwCheC9EJpccN9But0p1OmoIFnhW9Vo+t4suj/39DL+45Ox4P2WxARLGQfWO1f9+RNYLJRYiIiKyrkTL7EFp7+DCxCLSeww/M4yZAlp2XbTq+Zsamxg2RQBM955cctzk7L1hX+qlZs83XGK3UbnaH1hwfaLtCQDOmhr2bEnvNUTWAyUWIiIisq4kGq4EoGnscYhMzF/vPf4QACccW2koX93BbYDyQi9tDvtBvr916cZ1iQFbyWmyKL3GdWNNLwegZvAhiE7NXx84+QgAZzzbCQZWtyIisp4osRAREZF1ZfdFL6E9EcJrIkwe+/n89cnZg9t9aRzcnjPotx2+J7qW6C8B+OdKxJavrtTsnP2XXE2nqcBrZoieunv+erzzCADh4J605hdZL5RYiIiIyLqyvbqEh31XATD46H/MX587uB2vXf02qDnTwW32h4EltkIlEtRO2a1Y7jQPVh9qLON+pz1DMfj4f81fLx6xB7dd9enNL7JeKLEQERGRdSe68yYAKrruhljEHtyeslWagi2Xpz2/K7QTgMLw2UXvJwZO4jfTTBkvW3YeSuu1nE4H4cYb7Ou13QGJBEyNEIp2AVCxI/3fj8h6oMRCRERE1p39V76SflNCIDFB5PQviRz5N/zMEDYFbNud/opFccNeAEIzbfaD/ov0z55/OM4WWqpK0n69pktvZML4KI4OYLqPMN1qz4ucS4TYvTW9Mxwi64USCxEREVl3DjSW84DLHuIeu/PPcfz0IwDc4ryZutJA2vPXNO8malz4mSEx2nnB/bGz9jxHd2AXblf6H5eu3l3P/eYgAON3fh3Xj98PwFPufYSKfWnPL7IeKLEQERGRdcfhcDDe8msAVPQ9iCcxwy/jByl99R+lfXAboCkUpJ1qAIYWacTn7rXnOWZCB9J+LYBCn5v20LUAFJ/5KZ6ZYY4kWrin+X9nZH6R9UCJhYiIiKxL26+8iTFTANgtQ3fv+wpvvmJrRub2uJx0e2yH79H2ZxfeNIbQuK0WVdh0aUZeDyB48LUkjE2KHk7s5lNFX+Yjr3tJxuYXyTUlFiIiIrIuXbatlu87b6YtUcX/LfsMn/yNwxmdf7ywGYBoz7EF181wK4Vmghnjpn73xRl7vasv2sOfxN7KP8VeyZdLv8T33v8K6ksLMja/SK65cx2AiIiIyGJcTgelr/5jPv307/CVNx7A73FldP7Jqotg9N8I9d0PxsDsFquBk48SAp43TeyqKc/Y69WVFuA4/CHuHZzke795kPJCb8bmFlkPlFiIiIjIuvVbVzTxW1c0ZWXuoj2vYub5z1IR6cT0H8dRZRvVhc88QgjoDOzkgDuzmzs+89q9GZ1PZD3RVigRERHZlK7at5WHzH4ABh//8fx1Z8/TAExV7M9FWCJ5S4mFiIiIbEpFPjetlbZSU+zYT+1FY6gYswe3/U2X5Co0kbykxEJEREQ2raKDNwNQFX4Gxnoxox2UJEaJGSf1OzNXEUpkM1BiISIiIpvW1Rcf5KlEC04M4af/i+n//gQAx80WdjaEchydSH5RYiEiIiKbVk3QzzNFVwFQcNdnKTj1U2aMm++Xvi/jVahENjolFiIiIrKpOXa/BgBPfAqAT8Q/wOte/5ZchiSSl5RYiIiIyKZ28WVXczpRC8CXor/NK970exzeVpHjqETyj/pYiIiIyKa2u7aEtxV/ATPcxite/ZvcfFFdrkMSyUtKLERERGRTczgc/Nl7bubc8CRXbavMdTgieUuJhYiIiGx6jeUBGssDuQ5DJK/pjIWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKRNiYWIiIiIiKTNnesAMs0YA0A4HM5xJCIiIiIi+W3uM/XcZ+zlbLjEYmxsDIDGxsYcRyIiIiIisjGMjY0RDAaXHeMwyaQfeSSRSNDV1UVxcTEOhyMnMYTDYRobGzl37hwlJSU5iUHWD70f5MX0npDz6f0g59P7Qc63Ht4PxhjGxsaoq6vD6Vz+FMWGW7FwOp00NDTkOgwASkpK9IeCzNP7QV5M7wk5n94Pcj69H+R8uX4/rLRSMUeHt0VEREREJG1KLEREREREJG1KLLLA5/Pxuc99Dp/Pl+tQZB3Q+0FeTO8JOZ/eD3I+vR/kfPn2fthwh7dFRERERGTtacVCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRilb75zW/S3NyM3+/nyiuv5JFHHll2/A9+8AN2796N3+/nwIED3HbbbWsUqayFVN4P3/nOd3jpS19KWVkZZWVl3HDDDSu+fyT/pPpnxJxbbrkFh8PBG97whuwGKGsq1ffDyMgIH/zgB6mtrcXn87Fz5079vbGBpPp++Mu//Et27dpFQUEBjY2NfOQjH2F6enqNopVsuvfee7n55pupq6vD4XDw4x//eMVn7rnnHi655BJ8Ph/bt2/nu9/9btbjTJqRlN1yyy3G6/Waf/iHfzDPPvusee9732tKS0tNb2/vouPvv/9+43K5zNe+9jXz3HPPmc985jPG4/GYo0ePrnHkkg2pvh/e+ta3mm9+85vmySefNMeOHTPvete7TDAYNB0dHWscuWRLqu+JOWfPnjX19fXmpS99qXn961+/NsFK1qX6fpiZmTGXXXaZuemmm8x9991nzp49a+655x5z5MiRNY5csiHV98P3v/994/P5zPe//31z9uxZ87Of/czU1taaj3zkI2scuWTDbbfdZj796U+bH/7whwYwP/rRj5Ydf+bMGRMIBMxHP/pR89xzz5lvfOMbxuVymdtvv31tAl6BEotVuOKKK8wHP/jB+X+Ox+Omrq7OfOUrX1l0/Jvf/Gbzmte8ZsG1K6+80vzu7/5uVuOUtZHq++HFYrGYKS4uNt/73veyFaKssdW8J2KxmLnqqqvM3/3d35l3vvOdSiw2kFTfD3/zN39jWlpaTCQSWasQZQ2l+n744Ac/aF7+8pcvuPbRj37UXH311VmNU9ZeMonFxz/+cbNv374F197ylreYG2+8MYuRJU9boVIUiUR4/PHHueGGG+avOZ1ObrjhBh588MFFn3nwwQcXjAe48cYblxwv+WM174cXm5ycJBqNUl5enq0wZQ2t9j3xxS9+kaqqKt7znvesRZiyRlbzfrj11ls5fPgwH/zgB6murmb//v386Z/+KfF4fK3ClixZzfvhqquu4vHHH5/fLnXmzBluu+02brrppjWJWdaX9f6Z0p3rAPLNwMAA8Xic6urqBderq6s5fvz4os/09PQsOr6npydrccraWM374cU+8YlPUFdXd8EfFJKfVvOeuO+++/j7v/97jhw5sgYRylpazfvhzJkz3HXXXbztbW/jtttu49SpU3zgAx8gGo3yuc99bi3ClixZzfvhrW99KwMDA1xzzTUYY4jFYrz//e/nj/7oj9YiZFlnlvpMGQ6HmZqaoqCgIEeRWVqxEMmhr371q9xyyy386Ec/wu/35zocyYGxsTHe/va3853vfIfKyspchyPrQCKRoKqqir/927/l0ksv5S1veQuf/vSn+da3vpXr0CQH7rnnHv70T/+Uv/7rv+aJJ57ghz/8IT/96U/50pe+lOvQRC6gFYsUVVZW4nK56O3tXXC9t7eXmpqaRZ+pqalJabzkj9W8H+Z8/etf56tf/Sp33HEHBw8ezGaYsoZSfU+cPn2a1tZWbr755vlriUQCALfbzYkTJ9i2bVt2g5asWc2fEbW1tXg8Hlwu1/y1PXv20NPTQyQSwev1ZjVmyZ7VvB/++I//mLe//e38zu/8DgAHDhxgYmKC973vfXz605/G6dR3xJvJUp8pS0pKcr5aAVqxSJnX6+XSSy/lzjvvnL+WSCS48847OXz48KLPHD58eMF4gF/84hdLjpf8sZr3A8DXvvY1vvSlL3H77bdz2WWXrUWoskZSfU/s3r2bo0ePcuTIkflfr3vd63jZy17GkSNHaGxsXMvwJcNW82fE1VdfzalTp+YTTIDnn3+e2tpaJRV5bjXvh8nJyQuSh7mk0xiTvWBlXVr3nylzfXo8H91yyy3G5/OZ7373u+a5554z73vf+0xpaanp6ekxxhjz9re/3Xzyk5+cH3///fcbt9ttvv71r5tjx46Zz33ucyo3u4Gk+n746le/arxer/mP//gP093dPf9rbGwsV78FybBU3xMvpqpQG0uq74f29nZTXFxsPvShD5kTJ06Y//7v/zZVVVXmy1/+cq5+C5JBqb4fPve5z5ni4mLzr//6r+bMmTPm5z//udm2bZt585vfnKvfgmTQ2NiYefLJJ82TTz5pAPMXf/EX5sknnzRtbW3GGGM++clPmre//e3z4+fKzf7hH/6hOXbsmPnmN7+pcrMbwTe+8Q3T1NRkvF6vueKKK8xDDz00f++6664z73znOxeM//d//3ezc+dO4/V6zb59+8xPf/rTNY5YsimV98OWLVsMcMGvz33uc2sfuGRNqn9GnE+JxcaT6vvhgQceMFdeeaXx+XympaXF/Mmf/ImJxWJrHLVkSyrvh2g0aj7/+c+bbdu2Gb/fbxobG80HPvABMzw8vPaBS8bdfffdi34mmHsPvPOd7zTXXXfdBc8cOnTIeL1e09LSYv7xH/9xzeNeisMYraOJiIiIiEh6dMZCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETSpsRCRERERETS9v8HfCGH4BCCrR8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Relative l2 error PINN with MultiscaleFourierNet 2.72%\n" ] } ], "source": [ "# plot the solution\n", "pl.plot(multiscale_pinn, title='Solution PINN with MultiscaleFourierNet')\n", "\n", "# sample new test points\n", "pts = pts = problem.spatial_domain.sample(100, 'grid')\n", "print(f'Relative l2 error PINN with MultiscaleFourierNet {l2_loss(multiscale_pinn(pts), problem.truth_solution(pts)).item():.2%}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is pretty clear that the network has learned the correct solution, with also a very law error. Obviously a longer training and a more expressive neural network could improve the results!\n", "\n", "## What's next?\n", "\n", "Congratulations on completing the one dimensional Poisson tutorial of **PINA** using `FourierFeatureEmbedding`! There are multiple directions you can go now:\n", "\n", "1. Train the network for longer or with different layer sizes and assert the finaly accuracy\n", "\n", "2. Understand the role of `sigma` in `FourierFeatureEmbedding` (see original paper for a nice reference)\n", "\n", "3. Code the *Spatio-temporal multi-scale Fourier feature architecture* for a more complex time dependent PDE (section 3 of the original reference)\n", "\n", "4. Many more..." ] } ], "metadata": { "kernelspec": { "display_name": "pina", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 2 }