""" Definition of the Poisson problem on a square domain.""" from pina.problem import SpatialProblem from pina.operators import laplacian from pina import LabelTensor, Condition from pina.domain import CartesianDomain from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue import torch def laplace_equation(input_, output_): force_term = (torch.sin(input_.extract(['x']) * torch.pi) * torch.sin(input_.extract(['y']) * torch.pi)) delta_u = laplacian(output_.extract(['u']), input_) return delta_u - force_term my_laplace = Equation(laplace_equation) class Poisson2DSquareProblem(SpatialProblem): output_variables = ['u'] spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) domains = { 'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}), 'g1': CartesianDomain({'x': [0, 1], 'y': 1}), 'g2': CartesianDomain({'x': [0, 1], 'y': 0}), 'g3': CartesianDomain({'x': 1, 'y': [0, 1]}), 'g4': CartesianDomain({'x': 0, 'y': [0, 1]}), } conditions = { 'nil_g1': Condition(domain='D', equation=FixedValue(0.0)), 'nil_g2': Condition(domain='D', equation=FixedValue(0.0)), 'nil_g3': Condition(domain='D', equation=FixedValue(0.0)), 'nil_g4': Condition(domain='D', equation=FixedValue(0.0)), 'laplace_D': Condition(domain='D', equation=my_laplace), } def poisson_sol(self, pts): return -(torch.sin(pts.extract(['x']) * torch.pi) * torch.sin(pts.extract(['y']) * torch.pi))