import torch import pytest from pina import Condition, LabelTensor, Trainer from pina.problem import SpatialProblem from pina.operators import laplacian from pina.domain import CartesianDomain from pina.model import FeedForward from pina.solvers import PINNInterface from pina.problem.zoo import Poisson2DSquareProblem as Poisson # from pina.equation import Equation # from pina.equation.equation_factory import FixedValue # def laplace_equation(input_, output_): # force_term = (torch.sin(input_.extract(['x']) * torch.pi) * # torch.sin(input_.extract(['y']) * torch.pi)) # delta_u = laplacian(output_.extract(['u']), input_) # return delta_u - force_term # my_laplace = Equation(laplace_equation) # in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y']) # out_ = LabelTensor(torch.tensor([[0.]]), ['u']) # in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y']) # out2_ = LabelTensor(torch.rand(60, 1), ['u']) # class Poisson(SpatialProblem): # output_variables = ['u'] # spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) # conditions = { # 'gamma1': Condition( # location=CartesianDomain({'x': [0, 1], 'y': 1}), # equation=FixedValue(0.0)), # 'gamma2': Condition( # location=CartesianDomain({'x': [0, 1], 'y': 0}), # equation=FixedValue(0.0)), # 'gamma3': Condition( # location=CartesianDomain({'x': 1, 'y': [0, 1]}), # equation=FixedValue(0.0)), # 'gamma4': Condition( # location=CartesianDomain({'x': 0, 'y': [0, 1]}), # equation=FixedValue(0.0)), # 'D': Condition( # input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']), # equation=my_laplace), # 'data': Condition( # input_points=in_, # output_points=out_), # 'data2': Condition( # input_points=in2_, # output_points=out2_) # } # def poisson_sol(self, pts): # return -(torch.sin(pts.extract(['x']) * torch.pi) * # torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2) # truth_solution = poisson_sol # from pina import TorchOptimizer # class FOOPINN(PINNInterface): # def __init__(self, model, problem): # super().__init__(models=[model], problem=problem, # optimizers=TorchOptimizer(torch.optim.Adam, lr=1e-3), # loss=torch.nn.MSELoss()) # def forward(self, x): # return self.models[0](x) # def loss_phys(self, samples, equation): # residual = self.compute_residual(samples=samples, equation=equation) # loss_value = self.loss( # torch.zeros_like(residual, requires_grad=True), residual # ) # self.store_log(loss_value=float(loss_value)) # return loss_value # # make the problem # poisson_problem = Poisson() # poisson_problem.discretise_domain(100) # model = FeedForward(len(poisson_problem.input_variables), # len(poisson_problem.output_variables)) # model_extra_feats = FeedForward( # len(poisson_problem.input_variables) + 1, # len(poisson_problem.output_variables)) # def test_constructor(): # with pytest.raises(TypeError): # PINNInterface() # # a simple pinn built with PINNInterface # FOOPINN(model, poisson_problem) # def test_train_step(): # solver = FOOPINN(model, poisson_problem) # trainer = Trainer(solver, max_epochs=2, accelerator='cpu') # trainer.train() # def test_log(): # solver = FOOPINN(model, poisson_problem) # trainer = Trainer(solver, max_epochs=2, accelerator='cpu') # trainer.train() # # assert the logged metrics are correct # logged_metrics = sorted(list(trainer.logged_metrics.keys())) # total_metrics = sorted( # list([key + '_loss' for key in poisson_problem.conditions.keys()]) # + ['mean_loss']) # assert logged_metrics == total_metrics