import pytest import torch from pina import LabelTensor, Condition from pina.model import FeedForward from pina.trainer import Trainer from pina.solver import DeepEnsemblePINN from pina.condition import ( InputTargetCondition, InputEquationCondition, DomainEquationCondition, ) from pina.problem.zoo import Poisson2DSquareProblem as Poisson from torch._dynamo.eval_frame import OptimizedModule # define problems problem = Poisson() problem.discretise_domain(10) # add input-output condition to test supervised learning input_pts = torch.rand(10, len(problem.input_variables)) input_pts = LabelTensor(input_pts, problem.input_variables) output_pts = torch.rand(10, len(problem.output_variables)) output_pts = LabelTensor(output_pts, problem.output_variables) problem.conditions["data"] = Condition(input=input_pts, target=output_pts) # define models models = [ FeedForward( len(problem.input_variables), len(problem.output_variables), n_layers=1 ) for _ in range(5) ] def test_constructor(): solver = DeepEnsemblePINN(problem=problem, models=models) assert solver.accepted_conditions_types == ( InputTargetCondition, InputEquationCondition, DomainEquationCondition, ) assert solver.num_ensemble == 5 @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_train(batch_size, compile): solver = DeepEnsemblePINN(models=models, problem=problem) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=1.0, val_size=0.0, test_size=0.0, compile=compile, ) trainer.train() if trainer.compile: assert all( [isinstance(model, OptimizedModule) for model in solver.models] ) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_validation(batch_size, compile): solver = DeepEnsemblePINN(models=models, problem=problem) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=0.9, val_size=0.1, test_size=0.0, compile=compile, ) trainer.train() if trainer.compile: assert all( [isinstance(model, OptimizedModule) for model in solver.models] ) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) def test_solver_test(batch_size, compile): solver = DeepEnsemblePINN(models=models, problem=problem) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=0.7, val_size=0.2, test_size=0.1, compile=compile, ) trainer.test() if trainer.compile: assert all( [isinstance(model, OptimizedModule) for model in solver.models] ) def test_train_load_restore(): dir = "tests/test_solver/tmp" solver = DeepEnsemblePINN(models=models, problem=problem) trainer = Trainer( solver=solver, max_epochs=5, accelerator="cpu", batch_size=None, train_size=0.7, val_size=0.2, test_size=0.1, default_root_dir=dir, ) trainer.train() # restore new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu") new_trainer.train( ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/" + "epoch=4-step=5.ckpt" ) # loading new_solver = DeepEnsemblePINN.load_from_checkpoint( f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt", problem=problem, models=models, ) test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables) assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape torch.testing.assert_close( new_solver.forward(test_pts), solver.forward(test_pts) ) # rm directories import shutil shutil.rmtree("tests/test_solver/tmp")