"""Module for Neural Tangent Kernel Class""" import torch from .weighting_interface import WeightingInterface from ..utils import check_consistency class NeuralTangentKernelWeighting(WeightingInterface): """ A neural tangent kernel scheme for weighting different losses to boost the convergence. .. seealso:: **Original reference**: Wang, Sifan, Xinling Yu, and Paris Perdikaris. *When and why PINNs fail to train: A neural tangent kernel perspective*. Journal of Computational Physics 449 (2022): 110768. DOI: `10.1016 `_. """ def __init__(self, alpha=0.5): """ Initialization of the :class:`NeuralTangentKernelWeighting` class. :param float alpha: The alpha parameter. :raises ValueError: If ``alpha`` is not between 0 and 1 (inclusive). """ super().__init__() # Check consistency check_consistency(alpha, float) if alpha < 0 or alpha > 1: raise ValueError("alpha should be a value between 0 and 1") # Initialize parameters self.alpha = alpha self.weights = {} self.default_value_weights = 1.0 def aggregate(self, losses): """ Weight the losses according to the Neural Tangent Kernel algorithm. :param dict(torch.Tensor) input: The dictionary of losses. :return: The aggregation of the losses. It should be a scalar Tensor. :rtype: torch.Tensor """ # Define a dictionary to store the norms of the gradients losses_norm = {} # Compute the gradient norms for each loss component for condition, loss in losses.items(): loss.backward(retain_graph=True) grads = torch.cat( [p.grad.flatten() for p in self.solver.model.parameters()] ) losses_norm[condition] = grads.norm() # Update the weights self.weights = { condition: self.alpha * self.weights.get(condition, self.default_value_weights) + (1 - self.alpha) * losses_norm[condition] / sum(losses_norm.values()) for condition in losses } return sum( self.weights[condition] * loss for condition, loss in losses.items() )