""" Trainer module. """ import torch import pytorch_lightning from .utils import check_consistency from .data import PinaDataModule from .solvers.solver import SolverInterface class Trainer(pytorch_lightning.Trainer): def __init__(self, solver, batch_size=None, train_size=.7, test_size=.2, eval_size=.1, **kwargs): """ PINA Trainer class for costumizing every aspect of training via flags. :param solver: A pina:class:`SolverInterface` solver for the differential problem. :type solver: SolverInterface :param batch_size: How many samples per batch to load. If ``batch_size=None`` all samples are loaded and data are not batched, defaults to None. :type batch_size: int | None :Keyword Arguments: The additional keyword arguments specify the training setup and can be choosen from the `pytorch-lightning Trainer API `_ """ super().__init__(**kwargs) # check inheritance consistency for solver and batch size check_consistency(solver, SolverInterface) if batch_size is not None: check_consistency(batch_size, int) self.train_size = train_size self.test_size = test_size self.eval_size = eval_size self.solver = solver self.batch_size = batch_size self._create_loader() self._move_to_device() def _move_to_device(self): device = self._accelerator_connector._parallel_devices[0] # move parameters to device pb = self.solver.problem if hasattr(pb, "unknown_parameters"): for key in pb.unknown_parameters: pb.unknown_parameters[key] = torch.nn.Parameter( pb.unknown_parameters[key].data.to(device) ) def _create_loader(self): """ This method is used here because is resampling is needed during training, there is no need to define to touch the trainer dataloader, just call the method. """ if not self.solver.problem.collector.full: error_message = '\n'.join( [ f"""{" " * 13} ---> Condition {key} {"sampled" if value else "not sampled"}""" for key, value in self._solver.problem.collector._is_conditions_ready.items() ] ) raise RuntimeError('Cannot create Trainer if not all conditions ' 'are sampled. The Trainer got the following:\n' f'{error_message}') devices = self._accelerator_connector._parallel_devices if len(devices) > 1: raise RuntimeError("Parallel training is not supported yet.") device = devices[0] data_module = PinaDataModule(problem=self.solver.problem, device=device, train_size=self.train_size, test_size=self.test_size, eval_size=self.eval_size) data_module.setup() self._loader = data_module.train_dataloader() def train(self, **kwargs): """ Train the solver method. """ return super().fit( self.solver, train_dataloaders=self._loader, **kwargs ) @property def solver(self): """ Returning trainer solver. """ return self._solver @solver.setter def solver(self, solver): self._solver = solver