import argparse import sys import numpy as np import torch from torch.nn import ReLU, Tanh, Softplus from pina import PINN, LabelTensor, Plotter from pina.model import FeedForward from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh from problems.poisson import Poisson class myFeature(torch.nn.Module): """ Feature: sin(x) """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): return torch.sin(x[:, 0]*torch.pi) * torch.sin(x[:, 1]*torch.pi) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature()] if args.features else [] poisson_problem = Poisson() model = FeedForward( layers=[20, 20], output_variables=poisson_problem.output_variables, input_variables=poisson_problem.input_variables, func=Softplus, extra_features=feat ) pinn = PINN( poisson_problem, model, lr=0.03, error_norm='mse', regularizer=1e-8) if args.s: print(pinn) pinn.span_pts(20, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) pinn.span_pts(20, 'grid', ['D']) #pinn.plot_pts() pinn.train(5000, 100) with open('poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_: for i, losses in enumerate(pinn.history): file_.write('{} {}\n'.format(i, sum(losses))) pinn.save_state('pina.poisson') else: pinn.load_state('pina.poisson') plotter = Plotter() plotter.plot(pinn)