""" Module to define InputEquationCondition class and its subclasses. """ from torch_geometric.data import Data from .condition_interface import ConditionInterface from ..label_tensor import LabelTensor from ..graph import Graph from ..utils import check_consistency from ..equation.equation_interface import EquationInterface class InputEquationCondition(ConditionInterface): """ Condition defined by input data and an equation. This condition can be used in a Physics Informed problems. Based on the type of the input, different condition implementations are available: - :class:`InputTensorEquationCondition`: For :class:`~pina.label_tensor.LabelTensor` input data. - :class:`InputGraphEquationCondition`: For :class:`~pina.graph.Graph` input data. """ __slots__ = ["input", "equation"] _avail_input_cls = (LabelTensor, Graph, list, tuple) _avail_equation_cls = EquationInterface def __new__(cls, input, equation): """ Instantiate the appropriate subclass of :class:`InputEquationCondition` based on the type of `input`. :param input: Input data for the condition. :type input: LabelTensor | Graph | list[Graph] | tuple[Graph] :param EquationInterface equation: Equation object containing the equation function. :return: Subclass of InputEquationCondition, based on the input type. :rtype: pina.condition.input_equation_condition. InputTensorEquationCondition | pina.condition.input_equation_condition.InputGraphEquationCondition :raises ValueError: If input is not of type :class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`. """ # If the class is already a subclass, return the instance if cls != InputEquationCondition: return super().__new__(cls) # Instanciate the correct subclass if isinstance(input, (Graph, Data, list, tuple)): subclass = InputGraphEquationCondition cls._check_graph_list_consistency(input) subclass._check_label_tensor(input) return subclass.__new__(subclass, input, equation) if isinstance(input, LabelTensor): subclass = InputTensorEquationCondition return subclass.__new__(subclass, input, equation) # If the input is not a LabelTensor or a Graph object raise an error raise ValueError( "The input data object must be a LabelTensor or a Graph object." ) def __init__(self, input, equation): """ Initialize the InputEquationCondition by storing the input and equation. :param input: Input data for the condition. :type input: pina.label_tensor.LabelTensor | pina.graph.Graph | list[pina.graph.Graph] | tuple[pina.graph.Graph] :param EquationInterface equation: Equation object containing the equation function. .. note:: If `input` is composed by a list of :class:`~pina.graph.Graph` objects, all elements must have the same structure (keys and data types). Moreover, at least one attribute must be a :class:`~pina.label_tensor.LabelTensor`. """ super().__init__() self.input = input self.equation = equation def __setattr__(self, key, value): if key == "input": check_consistency(value, self._avail_input_cls) InputEquationCondition.__dict__[key].__set__(self, value) elif key == "equation": check_consistency(value, self._avail_equation_cls) InputEquationCondition.__dict__[key].__set__(self, value) elif key in ("_problem"): super().__setattr__(key, value) class InputTensorEquationCondition(InputEquationCondition): """ InputEquationCondition subclass for :class:`~pina.label_tensor.LabelTensor` input data. """ class InputGraphEquationCondition(InputEquationCondition): """ InputEquationCondition subclass for :class:`~pina.graph.Graph` input data. """ @staticmethod def _check_label_tensor(input): """ Check if at least one :class:`~pina.label_tensor.LabelTensor` is present in the :class:`~pina.graph.Graph` object. :param input: Input data. :type input: torch.Tensor | Graph | Data :raises ValueError: If the input data object does not contain at least one LabelTensor. """ # Store the fist element of the list/tuple if input is a list/tuple # it is anougth to check the first element because all elements must # have the same type and structure (already checked) data = input[0] if isinstance(input, (list, tuple)) else input # Check if the input data contains at least one LabelTensor for v in data.values(): if isinstance(v, LabelTensor): return raise ValueError( "The input data object must contain at least one LabelTensor." )