"""Formulation of the Helmholtz problem.""" import torch from ... import Condition from ...operator import laplacian from ...domain import CartesianDomain from ...problem import SpatialProblem from ...utils import check_consistency from ...equation import Equation, FixedValue class HelmholtzEquation(Equation): """ Implementation of the Helmholtz equation. """ def __init__(self, alpha): """ Initialization of the :class:`HelmholtzEquation` class. :param alpha: Parameter of the forcing term. :type alpha: float | int """ self.alpha = alpha check_consistency(alpha, (int, float)) def equation(input_, output_): """ Implementation of the Helmholtz equation. :param LabelTensor input_: Input data of the problem. :param LabelTensor output_: Output data of the problem. :return: The residual of the Helmholtz equation. :rtype: LabelTensor """ lap = laplacian(output_, input_, components=["u"], d=["x", "y"]) q = ( (1 - 2 * (self.alpha * torch.pi) ** 2) * torch.sin(self.alpha * torch.pi * input_.extract("x")) * torch.sin(self.alpha * torch.pi * input_.extract("y")) ) return lap + output_ - q super().__init__(equation) class HelmholtzProblem(SpatialProblem): r""" Implementation of the Helmholtz problem in the square domain :math:`[-1, 1] \times [-1, 1]`. .. seealso:: **Original reference**: Si, Chenhao, et al. *Complex Physics-Informed Neural Network.* arXiv preprint arXiv:2502.04917 (2025). DOI: `arXiv:2502.04917 `_. :Example: >>> problem = HelmholtzProblem() """ output_variables = ["u"] spatial_domain = CartesianDomain({"x": [-1, 1], "y": [-1, 1]}) domains = { "D": CartesianDomain({"x": [-1, 1], "y": [-1, 1]}), "g1": CartesianDomain({"x": [-1, 1], "y": 1.0}), "g2": CartesianDomain({"x": [-1, 1], "y": -1.0}), "g3": CartesianDomain({"x": 1.0, "y": [-1, 1]}), "g4": CartesianDomain({"x": -1.0, "y": [-1, 1]}), } conditions = { "g1": Condition(domain="g1", equation=FixedValue(0.0)), "g2": Condition(domain="g2", equation=FixedValue(0.0)), "g3": Condition(domain="g3", equation=FixedValue(0.0)), "g4": Condition(domain="g4", equation=FixedValue(0.0)), } def __init__(self, alpha=3.0): """ Initialization of the :class:`HelmholtzProblem` class. :param alpha: Parameter of the forcing term. :type alpha: float | int """ super().__init__() self.alpha = alpha check_consistency(alpha, (int, float)) self.conditions["D"] = Condition( domain="D", equation=HelmholtzEquation(self.alpha) ) def solution(self, pts): """ Implementation of the analytical solution of the Helmholtz problem. :param LabelTensor pts: Points where the solution is evaluated. :return: The analytical solution of the Poisson problem. :rtype: LabelTensor """ sol = torch.sin(self.alpha * torch.pi * pts.extract("x")) * torch.sin( self.alpha * torch.pi * pts.extract("y") ) sol.labels = self.output_variables return sol