import argparse import torch from torch.nn import Softplus from pina import Plotter, LabelTensor, PINN from parametric_poisson2 import ParametricPoisson from pina.model import FeedForward class myFeature(torch.nn.Module): """ """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): t = ( torch.exp( - 2*(x.extract(['x']) - x.extract(['mu1']))**2 - 2*(x.extract(['y']) - x.extract(['mu2']))**2 ) ) return LabelTensor(t, ['k0']) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature()] if args.features else [] poisson_problem = ParametricPoisson() model = FeedForward( layers=[10, 10, 10], output_variables=poisson_problem.output_variables, input_variables=poisson_problem.input_variables, func=Softplus, extra_features=feat ) pinn = PINN( poisson_problem, model, lr=0.006, regularizer=1e-6) if args.s: pinn.span_pts( {'variables': ['x', 'y'], 'mode': 'random', 'n': 100}, {'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5}, locations=['D']) pinn.span_pts( {'variables': ['x', 'y'], 'mode': 'grid', 'n': 20}, {'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5}, locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) pinn.train(10000, 100) pinn.save_state('pina.poisson_param') else: pinn.load_state('pina.poisson_param') plotter = Plotter() plotter.plot(pinn, component='u', parametric=True, params_value=0)