"""Utils module""" from functools import reduce from .label_tensor import LabelTensor def number_parameters(model, aggregate=True, only_trainable=True): #TODO: check """ Return the number of parameters of a given `model`. :param torch.nn.Module model: the torch module to inspect. :param bool aggregate: if True the return values is an integer corresponding to the total amount of parameters of whole model. If False, it returns a dictionary whose keys are the names of layers and the values the corresponding number of parameters. Default is True. :param bool trainable: if True, only trainable parameters are count, otherwise no. Default is True. :return: the number of parameters of the model :rtype: dict or int """ tmp = {} for name, parameter in model.named_parameters(): if only_trainable and not parameter.requires_grad: continue tmp[name] = parameter.numel() if aggregate: tmp = sum(tmp.values()) return tmp def merge_tensors(tensors): # name to be changed if tensors: return reduce(merge_two_tensors, tensors[1:], tensors[0]) raise ValueError("Expected at least one tensor") def merge_two_tensors(tensor1, tensor2): n1 = tensor1.shape[0] n2 = tensor2.shape[0] tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels) tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels) return tensor1.append(tensor2)