import pytest import torch from pina import LabelTensor, Condition from pina.model import FeedForward from pina.trainer import Trainer from pina.solver import RBAPINN from pina.condition import ( InputTargetCondition, InputEquationCondition, DomainEquationCondition, ) from pina.problem.zoo import ( Poisson2DSquareProblem as Poisson, InversePoisson2DSquareProblem as InversePoisson, ) from torch._dynamo.eval_frame import OptimizedModule # define problems problem = Poisson() problem.discretise_domain(10) inverse_problem = InversePoisson() inverse_problem.discretise_domain(10) # reduce the number of data points to speed up testing data_condition = inverse_problem.conditions["data"] data_condition.input = data_condition.input[:10] data_condition.target = data_condition.target[:10] # add input-output condition to test supervised learning input_pts = torch.rand(10, len(problem.input_variables)) input_pts = LabelTensor(input_pts, problem.input_variables) output_pts = torch.rand(10, len(problem.output_variables)) output_pts = LabelTensor(output_pts, problem.output_variables) problem.conditions["data"] = Condition(input=input_pts, target=output_pts) # define model model = FeedForward(len(problem.input_variables), len(problem.output_variables)) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("eta", [1, 0.001]) @pytest.mark.parametrize("gamma", [0.5, 0.9]) def test_constructor(problem, eta, gamma): solver = RBAPINN(model=model, problem=problem, eta=eta, gamma=gamma) with pytest.raises(ValueError): solver = RBAPINN(model=model, problem=problem, gamma=1.5) with pytest.raises(ValueError): solver = RBAPINN(model=model, problem=problem, eta=-0.1) assert solver.accepted_conditions_types == ( InputTargetCondition, InputEquationCondition, DomainEquationCondition, ) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) @pytest.mark.parametrize( "loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()] ) def test_solver_train(problem, batch_size, loss, compile): solver = RBAPINN(model=model, problem=problem, loss=loss) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=1.0, val_size=0.0, test_size=0.0, compile=compile, ) trainer.train() if trainer.compile: assert isinstance(solver.model, OptimizedModule) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) @pytest.mark.parametrize( "loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()] ) def test_solver_validation(problem, batch_size, loss, compile): solver = RBAPINN(model=model, problem=problem, loss=loss) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=0.9, val_size=0.1, test_size=0.0, compile=compile, ) trainer.train() if trainer.compile: assert isinstance(solver.model, OptimizedModule) @pytest.mark.parametrize("problem", [problem, inverse_problem]) @pytest.mark.parametrize("batch_size", [None, 1, 5, 20]) @pytest.mark.parametrize("compile", [True, False]) @pytest.mark.parametrize( "loss", [torch.nn.L1Loss(reduction="sum"), torch.nn.MSELoss()] ) def test_solver_test(problem, batch_size, loss, compile): solver = RBAPINN(model=model, problem=problem, loss=loss) trainer = Trainer( solver=solver, max_epochs=2, accelerator="cpu", batch_size=batch_size, train_size=0.7, val_size=0.2, test_size=0.1, compile=compile, ) trainer.test() if trainer.compile: assert isinstance(solver.model, OptimizedModule) @pytest.mark.parametrize("problem", [problem, inverse_problem]) def test_train_load_restore(problem): dir = "tests/test_solver/tmp" problem = problem solver = RBAPINN(model=model, problem=problem) trainer = Trainer( solver=solver, max_epochs=5, accelerator="cpu", batch_size=None, train_size=0.7, val_size=0.2, test_size=0.1, default_root_dir=dir, ) trainer.train() # restore new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu") new_trainer.train( ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/" + "epoch=4-step=5.ckpt" ) # loading new_solver = RBAPINN.load_from_checkpoint( f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt", problem=problem, model=model, ) test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables) assert new_solver.forward(test_pts).shape == (20, 1) assert new_solver.forward(test_pts).shape == ( solver.forward(test_pts).shape ) torch.testing.assert_close( new_solver.forward(test_pts), solver.forward(test_pts) ) # rm directories import shutil shutil.rmtree("tests/test_solver/tmp")