import torch import pytest from pina.label_tensor import LabelTensor data = torch.rand((20, 3)) labels_column = {1: {"name": "space", "dof": ["x", "y", "z"]}} labels_row = {0: {"name": "samples", "dof": range(20)}} labels_list = ["x", "y", "z"] labels_all = labels_column.copy() labels_all.update(labels_row) @pytest.mark.parametrize( "labels", [labels_column, labels_row, labels_all, labels_list] ) def test_constructor(labels): print(LabelTensor(data, labels)) def test_wrong_constructor(): with pytest.raises(ValueError): LabelTensor(data, ["a", "b"]) @pytest.mark.parametrize("labels", [labels_column, labels_all]) @pytest.mark.parametrize("labels_te", ["z", ["z"], {"space": ["z"]}]) def test_extract_column(labels, labels_te): tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 1 assert new.shape[0] == 20 assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new)) @pytest.mark.parametrize("labels", [labels_row, labels_all]) @pytest.mark.parametrize("labels_te", [{"samples": [2]}]) def test_extract_row(labels, labels_te): tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 3 assert new.shape[0] == 1 assert torch.all(torch.isclose(data[2].reshape(1, -1), new)) @pytest.mark.parametrize( "labels_te", [{"samples": [2], "space": ["z"]}, {"space": "z", "samples": 2}], ) def test_extract_2D(labels_te): labels = labels_all tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) assert new.ndim == tensor.ndim assert new.shape[1] == 1 assert new.shape[0] == 1 assert torch.all(torch.isclose(data[2, 2].reshape(1, 1), new)) def test_extract_3D(): data = torch.rand(20, 3, 4) labels = { 1: {"name": "space", "dof": ["x", "y", "z"]}, 2: {"name": "time", "dof": range(4)}, } labels_te = {"space": ["x", "z"], "time": range(1, 4)} tensor = LabelTensor(data, labels) new = tensor.extract(labels_te) tensor2 = LabelTensor(data, labels) assert new.ndim == tensor.ndim assert new.shape[0] == 20 assert new.shape[1] == 2 assert new.shape[2] == 3 assert torch.all(torch.isclose(data[:, 0::2, 1:4].reshape(20, 2, 3), new)) assert tensor2.ndim == tensor.ndim assert tensor2.shape == tensor.shape assert tensor.full_labels == tensor2.full_labels assert new.shape != tensor.shape def test_concatenation_3D(): data_1 = torch.rand(20, 3, 4) labels_1 = ["x", "y", "z", "w"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(50, 3, 4) labels_2 = ["x", "y", "z", "w"] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2]) assert lt_cat.shape == (70, 3, 4) assert lt_cat.full_labels[0]["dof"] == range(70) assert lt_cat.full_labels[1]["dof"] == range(3) assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w"] data_1 = torch.rand(20, 3, 4) labels_1 = ["x", "y", "z", "w"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2, 4) labels_2 = ["x", "y", "z", "w"] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=1) assert lt_cat.shape == (20, 5, 4) assert lt_cat.full_labels[0]["dof"] == range(20) assert lt_cat.full_labels[1]["dof"] == range(5) assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w"] data_1 = torch.rand(20, 3, 2) labels_1 = ["x", "y"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 3) labels_2 = ["z", "w", "a"] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=2) assert lt_cat.shape == (20, 3, 5) assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w", "a"] assert lt_cat.full_labels[0]["dof"] == range(20) assert lt_cat.full_labels[1]["dof"] == range(3) data_1 = torch.rand(20, 2, 4) labels_1 = ["x", "y", "z", "w"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 4) labels_2 = ["x", "y", "z", "w"] lt2 = LabelTensor(data_2, labels_2) with pytest.raises(RuntimeError): LabelTensor.cat([lt1, lt2], dim=2) data_1 = torch.rand(20, 3, 2) labels_1 = ["x", "y"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 3) labels_2 = ["z", "w", "a"] lt2 = LabelTensor(data_2, labels_2) lt_cat = LabelTensor.cat([lt1, lt2], dim=2) assert lt_cat.shape == (20, 3, 5) assert lt_cat.full_labels[2]["dof"] == ["x", "y", "z", "w", "a"] assert lt_cat.full_labels[0]["dof"] == range(20) assert lt_cat.full_labels[1]["dof"] == range(3) def test_summation(): lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(30, 3), ["x", "y", "z"]) with pytest.raises(RuntimeError): LabelTensor.summation([lt1, lt2]) lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all) lt_sum = LabelTensor.summation([lt1, lt2]) assert lt_sum.ndim == lt_sum.ndim assert lt_sum.shape[0] == 20 assert lt_sum.shape[1] == 3 assert lt_sum.full_labels[0] == labels_all[0] assert lt_sum.labels == ["x+x", "y+y", "z+z"] assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all() lt1 = LabelTensor(torch.ones(20, 3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all) lt3 = LabelTensor(torch.zeros(20, 3), labels_all) lt_sum = LabelTensor.summation([lt1, lt2, lt3]) assert lt_sum.ndim == lt_sum.ndim assert lt_sum.shape[0] == 20 assert lt_sum.shape[1] == 3 assert lt_sum.full_labels[0] == labels_all[0] assert lt_sum.labels == ["x+x+x", "y+y+y", "z+z+z"] assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all() def test_append_3D(): data_1 = torch.rand(20, 3, 2) labels_1 = ["x", "y"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 2) labels_2 = ["z", "w"] lt2 = LabelTensor(data_2, labels_2) lt1 = lt1.append(lt2) assert lt1.shape == (20, 3, 4) assert lt1.full_labels[0]["dof"] == range(20) assert lt1.full_labels[1]["dof"] == range(3) assert lt1.full_labels[2]["dof"] == ["x", "y", "z", "w"] def test_append_2D(): data_1 = torch.rand(20, 2) labels_1 = ["x", "y"] lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2) labels_2 = ["z", "w"] lt2 = LabelTensor(data_2, labels_2) lt1 = lt1.append(lt2, mode="cross") assert lt1.shape == (400, 4) assert lt1.full_labels[0]["dof"] == range(400) assert lt1.full_labels[1]["dof"] == ["x", "y", "z", "w"] def test_vstack_3D(): data_1 = torch.rand(20, 3, 2) labels_1 = { 1: {"dof": ["a", "b", "c"], "name": "first"}, 2: {"dof": ["x", "y"], "name": "second"}, } lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 3, 2) labels_1 = { 1: {"dof": ["a", "b", "c"], "name": "first"}, 2: {"dof": ["x", "y"], "name": "second"}, } lt2 = LabelTensor(data_2, labels_1) lt_stacked = LabelTensor.vstack([lt1, lt2]) assert lt_stacked.shape == (40, 3, 2) assert lt_stacked.full_labels[0]["dof"] == range(40) assert lt_stacked.full_labels[1]["dof"] == ["a", "b", "c"] assert lt_stacked.full_labels[2]["dof"] == ["x", "y"] assert lt_stacked.full_labels[1]["name"] == "first" assert lt_stacked.full_labels[2]["name"] == "second" def test_vstack_2D(): data_1 = torch.rand(20, 2) labels_1 = {1: {"dof": ["x", "y"], "name": "second"}} lt1 = LabelTensor(data_1, labels_1) data_2 = torch.rand(20, 2) labels_1 = {1: {"dof": ["x", "y"], "name": "second"}} lt2 = LabelTensor(data_2, labels_1) lt_stacked = LabelTensor.vstack([lt1, lt2]) assert lt_stacked.shape == (40, 2) assert lt_stacked.full_labels[0]["dof"] == range(40) assert lt_stacked.full_labels[1]["dof"] == ["x", "y"] assert lt_stacked.full_labels[0]["name"] == 0 assert lt_stacked.full_labels[1]["name"] == "second" def test_sorting(): data = torch.ones(20, 5) data[:, 0] = data[:, 0] * 4 data[:, 1] = data[:, 1] * 2 data[:, 2] = data[:, 2] data[:, 3] = data[:, 3] * 5 data[:, 4] = data[:, 4] * 3 labels = ["d", "b", "a", "e", "c"] lt_data = LabelTensor(data, labels) lt_sorted = LabelTensor.sort_labels(lt_data) assert lt_sorted.shape == (20, 5) assert lt_sorted.labels == ["a", "b", "c", "d", "e"] assert torch.eq(lt_sorted.tensor[:, 0], torch.ones(20) * 1).all() assert torch.eq(lt_sorted.tensor[:, 1], torch.ones(20) * 2).all() assert torch.eq(lt_sorted.tensor[:, 2], torch.ones(20) * 3).all() assert torch.eq(lt_sorted.tensor[:, 3], torch.ones(20) * 4).all() assert torch.eq(lt_sorted.tensor[:, 4], torch.ones(20) * 5).all() data = torch.ones(20, 4, 5) data[:, 0, :] = data[:, 0] * 4 data[:, 1, :] = data[:, 1] * 2 data[:, 2, :] = data[:, 2] data[:, 3, :] = data[:, 3] * 3 labels = {1: {"dof": ["d", "b", "a", "c"], "name": 1}} lt_data = LabelTensor(data, labels) lt_sorted = LabelTensor.sort_labels(lt_data, dim=1) assert lt_sorted.shape == (20, 4, 5) assert lt_sorted.full_labels[1]["dof"] == ["a", "b", "c", "d"] assert torch.eq(lt_sorted.tensor[:, 0, :], torch.ones(20, 5) * 1).all() assert torch.eq(lt_sorted.tensor[:, 1, :], torch.ones(20, 5) * 2).all() assert torch.eq(lt_sorted.tensor[:, 2, :], torch.ones(20, 5) * 3).all() assert torch.eq(lt_sorted.tensor[:, 3, :], torch.ones(20, 5) * 4).all() @pytest.mark.parametrize( "labels", [ [f"s{i}" for i in range(10)], {0: {"dof": ["a", "b", "c"]}, 1: {"dof": [f"s{i}" for i in range(10)]}}, ], ) def test_cat_bool(labels): out = torch.randn((3, 10)) out = LabelTensor(out, labels) selected = out[torch.tensor([True, True, False])] assert selected.shape == (2, 10) assert selected.stored_labels[1]["dof"] == [f"s{i}" for i in range(10)] if isinstance(labels, dict): assert selected.stored_labels[0]["dof"] == ["a", "b"] def test_getitem_int(): data = torch.rand(20, 3) labels = {1: {"name": 1, "dof": ["x", "y", "z"]}} lt = LabelTensor(data, labels) new = lt[0, 0] assert new.ndim == 1 assert new.shape[0] == 1 assert torch.all(torch.isclose(data[0, 0], new)) data = torch.rand(20, 3, 2) labels = { 1: {"name": 1, "dof": ["x", "y", "z"]}, 2: {"name": 2, "dof": ["a", "b"]}, } lt = LabelTensor(data, labels) new = lt[0, 0, 0] assert new.ndim == 2 assert new.shape[0] == 1 assert new.shape[1] == 1 assert torch.all(torch.isclose(data[0, 0, 0], new)) assert new.stored_labels[0]["dof"] == ["x"] assert new.stored_labels[1]["dof"] == ["a"] new = lt[0, 0, :] assert new.ndim == 2 assert new.shape[0] == 1 assert new.shape[1] == 2 assert torch.all(torch.isclose(data[0, 0, :], new)) assert new.stored_labels[0]["dof"] == ["x"] assert new.stored_labels[1]["dof"] == ["a", "b"] new = lt[0, :, 1] assert new.ndim == 2 assert new.shape[0] == 3 assert new.shape[1] == 1 assert torch.all(torch.isclose(data[0, :, 1], new.squeeze())) assert new.stored_labels[0]["dof"] == ["x", "y", "z"] assert new.stored_labels[1]["dof"] == ["b"] labels.pop(2) lt = LabelTensor(data, labels) new = lt[0, 0, 0] assert new.ndim == 1 assert new.shape[0] == 1 assert new.stored_labels[0]["dof"] == ["x"] new = lt[:, 0, 0] assert new.ndim == 2 assert new.shape[0] == 20 assert new.shape[1] == 1 assert new.stored_labels[1]["dof"] == ["x"] new = lt[:, 0, :] assert new.ndim == 3 assert new.shape[0] == 20 assert new.shape[1] == 1 assert new.shape[2] == 2 assert new.stored_labels[1]["dof"] == ["x"]