:html_theme.sidebar_secondary.remove: Welcome to PINA's documentation! ======================================= .. grid:: 6 :gutter: 1 .. grid-item:: .. image:: index_files/tutorial_13_3.png :target: tutorial2/tutorial.html .. grid-item:: .. image:: index_files/tutorial_32_0.png :target: tutorial4/tutorial.html .. grid-item:: .. image:: index_files/tutorial_13_01.png :target: tutorial9/tutorial.html .. grid-item:: .. image:: index_files/tutorial_36_0.png :target: tutorial6/tutorial.html .. grid-item:: .. image:: index_files/tutorial_15_0.png :target: tutorial13/tutorial.html .. grid-item:: .. image:: index_files/tutorial_5_0.png :target: tutorial10/tutorial.html .. grid:: 1 1 3 3 .. grid-item:: :columns: 12 12 8 8 **PINA** is an open-source Python library designed to simplify and accelerate the development of Scientific Machine Learning (SciML) solutions. Built on top of `PyTorch `_, `PyTorch Lightning `_, and `PyTorch Geometric `_, PINA provides an intuitive framework for defining, experimenting with, and solving complex problems using Neural Networks, Physics-Informed Neural Networks (PINNs), Neural Operators, and more. - **Modular Architecture**: Designed with modularity in mind and relying on powerful yet composable abstractions, PINA allows users to easily plug, replace, or extend components, making experimentation and customization straightforward. - **Scalable Performance**: With native support for multi-device training, PINA handles large datasets efficiently, offering performance close to hand-crafted implementations with minimal overhead. - **Highly Flexible**: Whether you're looking for full automation or granular control, PINA adapts to your workflow. High-level abstractions simplify model definition, while expert users can dive deep to fine-tune every aspect of the training and inference process. For further information or questions about **PINA** contact us by email. .. grid-item-card:: Contents :class-title: sd-fs-5 :class-body: sd-pl-4 .. toctree:: :maxdepth: 1 Installing <_installation> API <_rst/_code> Tutorials <_tutorial> Cite PINA <_cite.rst> Contributing <_contributing> Team & Foundings <_team.rst> License <_LICENSE.rst>