import torch import pytest from pina.model.block import PeriodicBoundaryEmbedding, FourierFeatureEmbedding # test tolerance tol = 1e-6 def check_same_columns(tensor): # Get the first column and compute residual residual = tensor - tensor[0] zeros = torch.zeros_like(residual) # Compare each column with the first column all_same = torch.allclose(input=residual,other=zeros,atol=tol) return all_same def grad(u, x): """ Compute the first derivative of u with respect to x. """ return torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True, allow_unused=True, retain_graph=True)[0] def test_constructor_PeriodicBoundaryEmbedding(): PeriodicBoundaryEmbedding(input_dimension=1, periods=2) PeriodicBoundaryEmbedding(input_dimension=1, periods={'x': 3, 'y' : 4}) PeriodicBoundaryEmbedding(input_dimension=1, periods={0: 3, 1 : 4}) PeriodicBoundaryEmbedding(input_dimension=1, periods=2, output_dimension=10) with pytest.raises(TypeError): PeriodicBoundaryEmbedding() with pytest.raises(ValueError): PeriodicBoundaryEmbedding(input_dimension=1., periods=1) PeriodicBoundaryEmbedding(input_dimension=1, periods=1, output_dimension=1.) PeriodicBoundaryEmbedding(input_dimension=1, periods={'x':'x'}) PeriodicBoundaryEmbedding(input_dimension=1, periods={0:'x'}) @pytest.mark.parametrize("period", [1, 4, 10]) @pytest.mark.parametrize("input_dimension", [1, 2, 3]) def test_forward_backward_same_period_PeriodicBoundaryEmbedding(input_dimension, period): func = torch.nn.Sequential( PeriodicBoundaryEmbedding(input_dimension=input_dimension, output_dimension=60, periods=period), torch.nn.Tanh(), torch.nn.Linear(60, 60), torch.nn.Tanh(), torch.nn.Linear(60, 1) ) # coordinates x = period * torch.tensor([[0.],[1.]]) if input_dimension == 2: x = torch.cartesian_prod(x.flatten(),x.flatten()) elif input_dimension == 3: x = torch.cartesian_prod(x.flatten(),x.flatten(),x.flatten()) x.requires_grad = True # output f = func(x) assert check_same_columns(f) # compute backward loss = f.mean() loss.backward() def test_constructor_FourierFeatureEmbedding(): FourierFeatureEmbedding(input_dimension=1, output_dimension=20, sigma=1) with pytest.raises(TypeError): FourierFeatureEmbedding() with pytest.raises(RuntimeError): FourierFeatureEmbedding(input_dimension=1, output_dimension=3, sigma=1) with pytest.raises(ValueError): FourierFeatureEmbedding(input_dimension='x', output_dimension=20, sigma=1) FourierFeatureEmbedding(input_dimension=1, output_dimension='x', sigma=1) FourierFeatureEmbedding(input_dimension=1, output_dimension=20, sigma='x') @pytest.mark.parametrize("output_dimension", [2, 4, 6]) @pytest.mark.parametrize("input_dimension", [1, 2, 3]) @pytest.mark.parametrize("sigma", [10, 1, 0.1]) def test_forward_backward_FourierFeatureEmbedding(input_dimension, output_dimension, sigma): func = FourierFeatureEmbedding(input_dimension, output_dimension, sigma) # coordinates x = torch.rand((10, input_dimension), requires_grad=True) # output f = func(x) assert f.shape[-1] == output_dimension # compute backward loss = f.mean() loss.backward()