# PINA Tutorials In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**. Please read the following table for details about the tutorials. The HTML version of all the tutorials is available also within the [documentation](http://mathlab.github.io/PINA/). ## Getting started with PINA | Description | Tutorial | |---------------|-----------| Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb), [.py](tutorial1/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]| Building custom geometries with PINA `Location` class|[[.ipynb](tutorial1/tutorial.ipynb), [.py](tutorial1/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial1/tutorial.html)]| ## Physics Informed Neural Networks | Description | Tutorial | |---------------|-----------| Two dimensional Poisson problem using Extra Features Learning     |[[.ipynb](tutorial2/tutorial.ipynb), [.py](tutorial2/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial2/tutorial.html)]| Two dimensional Wave problem with hard constraint |[[.ipynb](tutorial3/tutorial.ipynb), [.py](tutorial3/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial3/tutorial.html)]| ## Neural Operator Learning | Description | Tutorial | |---------------|-----------| Two dimensional Darcy flow using the Fourier Neural Operator         |[[.ipynb](tutorial5/tutorial.ipynb), [.py](tutorial5/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial5/tutorial.html)]| ## Supervised Learning | Description | Tutorial | |---------------|-----------| Unstructured convolutional autoencoder via continuous convolution |[[.ipynb](tutorial4/tutorial.ipynb), [.py](tutorial4/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial4/tutorial.html)]|