import torch from pina.problem import AbstractProblem from pina import Condition, LabelTensor from pina.solvers import SupervisedSolver from pina.trainer import Trainer from pina.model import FeedForward from pina.loss.loss_interface import LpLoss class NeuralOperatorProblem(AbstractProblem): input_variables = ['u_0', 'u_1'] output_variables = ['u'] domains = { 'pts': LabelTensor( torch.rand(100, 2), labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}} ) } conditions = { 'data' : Condition( domain='pts', output_points=LabelTensor( torch.rand(100, 1), labels={1: {'name': 'output', 'dof': ['u']}} ) ) } class myFeature(torch.nn.Module): """ Feature: sin(x) """ def __init__(self): super(myFeature, self).__init__() def forward(self, x): t = (torch.sin(x.extract(['u_0']) * torch.pi) * torch.sin(x.extract(['u_1']) * torch.pi)) return LabelTensor(t, ['sin(x)sin(y)']) problem = NeuralOperatorProblem() # make the problem + extra feats extra_feats = [myFeature()] model = FeedForward(len(problem.input_variables), len(problem.output_variables)) model_extra_feats = FeedForward( len(problem.input_variables) + 1, len(problem.output_variables)) def test_constructor(): SupervisedSolver(problem=problem, model=model) # def test_constructor_extra_feats(): # SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats) class AutoSolver(SupervisedSolver): def forward(self, input): from pina.graph import Graph print(Graph) print(input) if not isinstance(input, Graph): input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2) print(input) print(input.data.edge_index) print(input.data) g = self.model[0](input.data, edge_index=input.data.edge_index) g.labels = {1: {'name': 'output', 'dof': ['u']}} return g du_dt_new = LabelTensor(self.model[0](graph).reshape(-1,1), labels = ['du']) return du_dt_new class GraphModel(torch.nn.Module): def __init__(self, in_channels, out_channels): from torch_geometric.nn import GCNConv, NNConv super().__init__() self.conv1 = GCNConv(in_channels, 16) self.conv2 = GCNConv(16, out_channels) def forward(self, data, edge_index): print(data) x = data.x print(x) x = self.conv1(x, edge_index) x = x.relu() x = self.conv2(x, edge_index) return x def test_graph(): solver = AutoSolver(problem = problem, model=GraphModel(2, 1), loss=LpLoss()) trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20) trainer.train() assert False def test_train_cpu(): solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss()) trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20) trainer.train() # def test_train_restore(): # tmpdir = "tests/tmp_restore" # solver = SupervisedSolver(problem=problem, # model=model, # extra_features=None, # loss=LpLoss()) # trainer = Trainer(solver=solver, # max_epochs=5, # accelerator='cpu', # default_root_dir=tmpdir) # trainer.train() # ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu') # t = ntrainer.train( # ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt') # import shutil # shutil.rmtree(tmpdir) # def test_train_load(): # tmpdir = "tests/tmp_load" # solver = SupervisedSolver(problem=problem, # model=model, # extra_features=None, # loss=LpLoss()) # trainer = Trainer(solver=solver, # max_epochs=15, # accelerator='cpu', # default_root_dir=tmpdir) # trainer.train() # new_solver = SupervisedSolver.load_from_checkpoint( # f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt', # problem = problem, model=model) # test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables) # assert new_solver.forward(test_pts).shape == (20, 1) # assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape # torch.testing.assert_close( # new_solver.forward(test_pts), # solver.forward(test_pts)) # import shutil # shutil.rmtree(tmpdir) # def test_train_extra_feats_cpu(): # pinn = SupervisedSolver(problem=problem, # model=model_extra_feats, # extra_features=extra_feats) # trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu') # trainer.train()