import argparse import sys import numpy as np import torch from torch.nn import ReLU, Tanh, Softplus from pina import PINN, LabelTensor, Plotter from pina.model import FeedForward from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh from problems.stokes import Stokes if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) args = parser.parse_args() stokes_problem = Stokes() model = FeedForward( layers=[10, 10, 10, 10], output_variables=stokes_problem.output_variables, input_variables=stokes_problem.input_variables, func=Softplus, ) pinn = PINN( stokes_problem, model, lr=0.006, error_norm='mse', regularizer=1e-8) if args.s: pinn.span_pts(200, 'grid', locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out']) pinn.span_pts(2000, 'random', locations=['D']) pinn.train(10000, 100) with open('stokes_history_{}.txt'.format(args.id_run), 'w') as file_: for i, losses in enumerate(pinn.history): file_.write('{} {}\n'.format(i, sum(losses))) pinn.save_state('pina.stokes') else: pinn.load_state('pina.stokes') plotter = Plotter() plotter.plot(pinn, components='ux') plotter.plot(pinn, components='uy') plotter.plot(pinn, components='p')