import torch import torch.nn as nn from pina.label_tensor import LabelTensor class FeedForward(torch.nn.Module): def __init__(self, input_variables, output_variables, inner_size=20, n_layers=2, func=nn.Tanh, layers=None, extra_features=None): ''' ''' super().__init__() if extra_features is None: extra_features = [] self.extra_features = nn.Sequential(*extra_features) self.input_variables = input_variables self.input_dimension = len(input_variables) self.output_variables = output_variables self.output_dimension = len(output_variables) n_features = len(extra_features) if layers is None: layers = [inner_size] * n_layers tmp_layers = layers.copy() tmp_layers.insert(0, self.input_dimension+n_features) tmp_layers.append(self.output_dimension) self.layers = [] for i in range(len(tmp_layers)-1): self.layers.append(nn.Linear(tmp_layers[i], tmp_layers[i+1])) if isinstance(func, list): self.functions = func else: self.functions = [func for _ in range(len(self.layers)-1)] unique_list = [] for layer, func in zip(self.layers[:-1], self.functions): unique_list.append(layer) if func is not None: unique_list.append(func()) unique_list.append(self.layers[-1]) self.model = nn.Sequential(*unique_list) def forward(self, x): """ """ x = x[self.input_variables] nf = len(self.extra_features) if nf == 0: return LabelTensor(self.model(x.tensor), self.output_variables) # if self.extra_features input_ = torch.zeros(x.shape[0], nf+x.shape[1], dtype=x.dtype, device=x.device) input_[:, :x.shape[1]] = x.tensor for i, feature in enumerate(self.extra_features, start=self.input_dimension): input_[:, i] = feature(x) return LabelTensor(self.model(input_), self.output_variables)