import torch import pytest from pina.problem.zoo import Poisson2DSquareProblem as Poisson from pina import LabelTensor def test_discretise_domain(): n = 10 poisson_problem = Poisson() boundaries = ['g1', 'g2', 'g3', 'g4'] poisson_problem.discretise_domain(n, 'grid', domains=boundaries) for b in boundaries: assert poisson_problem.discretised_domains[b].shape[0] == n poisson_problem.discretise_domain(n, 'random', domains=boundaries) for b in boundaries: assert poisson_problem.discretised_domains[b].shape[0] == n poisson_problem.discretise_domain(n, 'grid', domains=['D']) assert poisson_problem.discretised_domains['D'].shape[0] == n ** 2 poisson_problem.discretise_domain(n, 'random', domains=['D']) assert poisson_problem.discretised_domains['D'].shape[0] == n poisson_problem.discretise_domain(n, 'latin', domains=['D']) assert poisson_problem.discretised_domains['D'].shape[0] == n poisson_problem.discretise_domain(n, 'lh', domains=['D']) assert poisson_problem.discretised_domains['D'].shape[0] == n poisson_problem.discretise_domain(n) ''' def test_sampling_few_variables(): n = 10 poisson_problem = Poisson() poisson_problem.discretise_domain(n, 'grid', domains=['D'], variables=['x']) assert poisson_problem.discretised_domains['D'].shape[1] == 1 ''' def test_variables_correct_order_sampling(): n = 10 poisson_problem = Poisson() poisson_problem.discretise_domain(n, 'grid', domains=['D']) assert poisson_problem.discretised_domains['D'].labels == sorted( poisson_problem.input_variables) poisson_problem.discretise_domain(n, 'grid', domains=['D']) assert poisson_problem.discretised_domains['D'].labels == sorted( poisson_problem.input_variables) def test_add_points(): poisson_problem = Poisson() poisson_problem.discretise_domain(0, 'random', domains=['D']) new_pts = LabelTensor(torch.tensor([[0.5, -0.5]]), labels=['x', 'y']) poisson_problem.add_points({'D': new_pts}) assert torch.isclose(poisson_problem.discretised_domains['D'].extract('x'), new_pts.extract('x')) assert torch.isclose(poisson_problem.discretised_domains['D'].extract('y'), new_pts.extract('y'))